Python 多线程

简介: Python 多线程

多线程类似于同时执行多个不同程序,多线程运行有如下优点:

  • 使用线程可以把占据长时间的程序中的任务放到后台去处理。
  • 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度
  • 程序的运行速度可能加快
  • 在一些等待的任务实现上如用户输入、文件读写和网络收发数据等,线程就比较有用了。在这种情况下我们可以释放一些珍贵的资源如内存占用等等。

线程在执行过程中与进程还是有区别的。每个独立的进程有一个程序运行的入口、顺序执行序列和程序的出口。但是线程不能够独立执行,必须依存在应用程序中,由应用程序提供多个线程执行控制。

每个线程都有他自己的一组CPU寄存器,称为线程的上下文,该上下文反映了线程上次运行该线程的CPU寄存器的状态。

指令指针和堆栈指针寄存器是线程上下文中两个最重要的寄存器,线程总是在进程得到上下文中运行的,这些地址都用于标志拥有线程的进程地址空间中的内存。

  • 线程可以被抢占(中断)。
  • 在其他线程正在运行时,线程可以暂时搁置(也称为睡眠) -- 这就是线程的退让。


开始学习Python线程

Python中使用线程有两种方式:函数或者用类来包装线程对象。

函数式:调用thread模块中的start_new_thread()函数来产生新线程。语法如下:

thread.start_new_thread ( function, args[, kwargs] )

参数说明:

  • function - 线程函数。
  • args - 传递给线程函数的参数,他必须是个tuple类型。
  • kwargs - 可选参数。

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*- import threadimport time # 为线程定义一个函数def print_time( threadName, delay):    count = 0   while count < 5:       time.sleep(delay)      count += 1      print "%s: %s" % ( threadName, time.ctime(time.time()) ) # 创建两个线程try:    thread.start_new_thread( print_time, ("Thread-1", 2, ) )   thread.start_new_thread( print_time, ("Thread-2", 4, ) )except:    print "Error: unable to start thread" while 1:    pass

执行以上程序输出结果如下:

Thread-1: Thu Jan 22 15:42:17 2009

Thread-1: Thu Jan 22 15:42:19 2009

Thread-2: Thu Jan 22 15:42:19 2009

Thread-1: Thu Jan 22 15:42:21 2009

Thread-2: Thu Jan 22 15:42:23 2009

Thread-1: Thu Jan 22 15:42:23 2009

Thread-1: Thu Jan 22 15:42:25 2009

Thread-2: Thu Jan 22 15:42:27 2009

Thread-2: Thu Jan 22 15:42:31 2009

Thread-2: Thu Jan 22 15:42:35 2009

线程的结束一般依靠线程函数的自然结束;也可以在线程函数中调用thread.exit(),他抛出SystemExit exception,达到退出线程的目的。


线程模块

Python通过两个标准库thread和threading提供对线程的支持。thread提供了低级别的、原始的线程以及一个简单的锁。

threading 模块提供的其他方法:

  • threading.currentThread(): 返回当前的线程变量。
  • threading.enumerate(): 返回一个包含正在运行的线程的list。正在运行指线程启动后、结束前,不包括启动前和终止后的线程。
  • threading.activeCount(): 返回正在运行的线程数量,与len(threading.enumerate())有相同的结果。

除了使用方法外,线程模块同样提供了Thread类来处理线程,Thread类提供了以下方法:

  • run(): 用以表示线程活动的方法。
  • start():启动线程活动。
  • join([time]): 等待至线程中止。这阻塞调用线程直至线程的join() 方法被调用中止-正常退出或者抛出未处理的异常-或者是可选的超时发生。
  • isAlive(): 返回线程是否活动的。
  • getName(): 返回线程名。
  • setName(): 设置线程名。

使用Threading模块创建线程

使用Threading模块创建线程,直接从threading.Thread继承,然后重写__init__方法和run方法:

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*- import threadingimport time exitFlag = 0 class myThread (threading.Thread):   #继承父类threading.Thread    def __init__(self, threadID, name, counter):         threading.Thread.__init__(self)        self.threadID = threadID        self.name = name        self.counter = counter    def run(self):                   #把要执行的代码写到run函数里面 线程在创建后会直接运行run函数        print "Starting " + self.name        print_time(self.name, self.counter, 5)        print "Exiting " + self.name def print_time(threadName, delay, counter):     while counter:         if exitFlag:             (threading.Thread).exit()        time.sleep(delay)        print "%s: %s" % (threadName, time.ctime(time.time()))        counter -= 1 # 创建新线程thread1 = myThread(1, "Thread-1", 1)thread2 = myThread(2, "Thread-2", 2) # 开启线程thread1.start()thread2.start() print "Exiting Main Thread"

以上程序执行结果如下;

Starting Thread-1

Starting Thread-2

Exiting Main Thread

Thread-1: Thu Mar 21 09:10:03 2013

Thread-1: Thu Mar 21 09:10:04 2013

Thread-2: Thu Mar 21 09:10:04 2013

Thread-1: Thu Mar 21 09:10:05 2013

Thread-1: Thu Mar 21 09:10:06 2013

Thread-2: Thu Mar 21 09:10:06 2013

Thread-1: Thu Mar 21 09:10:07 2013

Exiting Thread-1

Thread-2: Thu Mar 21 09:10:08 2013

Thread-2: Thu Mar 21 09:10:10 2013

Thread-2: Thu Mar 21 09:10:12 2013

Exiting Thread-2


线程同步

如果多个线程共同对某个数据修改,则可能出现不可预料的结果,为了保证数据的正确性,需要对多个线程进行同步。

使用Thread对象的Lock和Rlock可以实现简单的线程同步,这两个对象都有acquire方法和release方法,对于那些需要每次只允许一个线程操作的数据,可以将其操作放到acquire和release方法之间。如下:

多线程的优势在于可以同时运行多个任务(至少感觉起来是这样)。但是当线程需要共享数据时,可能存在数据不同步的问题。

考虑这样一种情况:一个列表里所有元素都是0,线程"set"从后向前把所有元素改成1,而线程"print"负责从前往后读取列表并打印。

那么,可能线程"set"开始改的时候,线程"print"便来打印列表了,输出就成了一半0一半1,这就是数据的不同步。为了避免这种情况,引入了锁的概念。

锁有两种状态——锁定和未锁定。每当一个线程比如"set"要访问共享数据时,必须先获得锁定;如果已经有别的线程比如"print"获得锁定了,那么就让线程"set"暂停,也就是同步阻塞;等到线程"print"访问完毕,释放锁以后,再让线程"set"继续。

经过这样的处理,打印列表时要么全部输出0,要么全部输出1,不会再出现一半0一半1的尴尬场面。

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*- import threadingimport time class myThread (threading.Thread):     def __init__(self, threadID, name, counter):         threading.Thread.__init__(self)        self.threadID = threadID        self.name = name        self.counter = counter    def run(self):         print "Starting " + self.name       # 获得锁,成功获得锁定后返回True       # 可选的timeout参数不填时将一直阻塞直到获得锁定       # 否则超时后将返回False        threadLock.acquire()        print_time(self.name, self.counter, 3)        # 释放锁        threadLock.release() def print_time(threadName, delay, counter):     while counter:         time.sleep(delay)        print "%s: %s" % (threadName, time.ctime(time.time()))        counter -= 1 threadLock = threading.Lock()threads = [] # 创建新线程thread1 = myThread(1, "Thread-1", 1)thread2 = myThread(2, "Thread-2", 2) # 开启新线程thread1.start()thread2.start() # 添加线程到线程列表threads.append(thread1)threads.append(thread2) # 等待所有线程完成for t in threads:     t.join()print "Exiting Main Thread"


线程优先级队列( Queue)

Python的Queue模块中提供了同步的、线程安全的队列类,包括FIFO(先入先出)队列Queue,LIFO(后入先出)队列LifoQueue,和优先级队列PriorityQueue。这些队列都实现了锁原语,能够在多线程中直接使用。可以使用队列来实现线程间的同步。

Queue模块中的常用方法:

  • Queue.qsize() 返回队列的大小
  • Queue.empty() 如果队列为空,返回True,反之False
  • Queue.full() 如果队列满了,返回True,反之False
  • Queue.full 与 maxsize 大小对应
  • Queue.get([block[, timeout]])获取队列,timeout等待时间
  • Queue.get_nowait() 相当Queue.get(False)
  • Queue.put(item, block=True, timeout=None) 写入队列,timeout等待时间
  • Queue.put_nowait(item) 相当 Queue.put(item, False)
  • Queue.task_done() 在完成一项工作之后,Queue.task_done()函数向任务已经完成的队列发送一个信号
  • Queue.join() 实际上意味着等到队列为空,再执行别的操作

实例(Python 2.0+)

#!/usr/bin/python# -*- coding: UTF-8 -*- import Queueimport threadingimport time exitFlag = 0 class myThread (threading.Thread):     def __init__(self, threadID, name, q):         threading.Thread.__init__(self)        self.threadID = threadID        self.name = name        self.q = q    def run(self):         print "Starting " + self.name        process_data(self.name, self.q)        print "Exiting " + self.name def process_data(threadName, q):     while not exitFlag:         queueLock.acquire()        if not workQueue.empty():             data = q.get()            queueLock.release()            print "%s processing %s" % (threadName, data)        else:             queueLock.release()        time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"]nameList = ["One", "Two", "Three", "Four", "Five"]queueLock = threading.Lock()workQueue = Queue.Queue(10)threads = []threadID = 1 # 创建新线程for tName in threadList:     thread = myThread(threadID, tName, workQueue)    thread.start()    threads.append(thread)    threadID += 1 # 填充队列queueLock.acquire()for word in nameList:     workQueue.put(word)queueLock.release() # 等待队列清空while not workQueue.empty():     pass # 通知线程是时候退出exitFlag = 1 # 等待所有线程完成for t in threads:     t.join()print "Exiting Main Thread"

以上程序执行结果:

Starting Thread-1

Starting Thread-2

Starting Thread-3

Thread-1 processing One

Thread-2 processing Two

Thread-3 processing Three

Thread-1 processing Four

Thread-2 processing Five

Exiting Thread-3

Exiting Thread-1

Exiting Thread-2

Exiting Main Thread

相关文章
|
7天前
|
安全 Python
告别低效编程!Python线程与进程并发技术详解,让你的代码飞起来!
【7月更文挑战第9天】Python并发编程提升效率:**理解并发与并行,线程借助`threading`模块处理IO密集型任务,受限于GIL;进程用`multiprocessing`实现并行,绕过GIL限制。示例展示线程和进程创建及同步。选择合适模型,注意线程安全,利用多核,优化性能,实现高效并发编程。
22 3
|
7天前
|
安全 数据安全/隐私保护 数据中心
Python并发编程大挑战:线程安全VS进程隔离,你的选择影响深远!
【7月更文挑战第9天】Python并发:线程共享内存,高效但需处理线程安全(GIL限制并发),适合IO密集型;进程独立内存,安全但通信复杂,适合CPU密集型。使用`threading.Lock`保证线程安全,`multiprocessing.Queue`实现进程间通信。选择取决于任务性质和性能需求。
19 1
|
7天前
|
Python
解锁Python并发新世界:线程与进程的并行艺术,让你的应用性能翻倍!
【7月更文挑战第9天】并发编程**是同时执行多个任务的技术,提升程序效率。Python的**threading**模块支持多线程,适合IO密集型任务,但受GIL限制。**multiprocessing**模块允许多进程并行,绕过GIL,适用于CPU密集型任务。例如,计算平方和,多线程版本使用`threading`分割工作并同步结果;多进程版本利用`multiprocessing.Pool`分块计算再合并。正确选择能优化应用性能。
|
8天前
|
安全 Java 调度
「Python入门」Python多线程
1. **线程与进程区别**:线程共享内存,进程独立;线程启动快,多线程效率高于多进程。 2. **多线程使用**:直接使用Thread类,通过`target`指定函数,`args`传递参数;或继承Thread,重写`run`方法。 3. **守护线程**:设置`setDaemon(True)`,主线程结束时,守护线程一同结束。 4. **join线程同步**:主线程等待子线程完成,如`t.join()`。 5. **线程锁**(Mutex):防止数据竞争,确保同一时间只有一个线程访问共享资源。 6. **RLock(递归锁)**:允许多次锁定,用于需要多次加锁的递归操作。
16 1
「Python入门」Python多线程
|
2天前
|
消息中间件 安全 数据处理
Python中的并发编程:理解多线程与多进程的区别与应用
在Python编程中,理解并发编程是提高程序性能和响应速度的关键。本文将深入探讨多线程和多进程的区别、适用场景及实际应用,帮助开发者更好地利用Python进行并发编程。
|
3天前
|
缓存 并行计算 监控
了解 Python 线程
【7月更文挑战第8天】在Python多线程编程中,`threading`模块允许我们获取当前线程名字,通过`current_thread().name`获取。线程名字有助于调试、日志和资源管理。示例代码展示了如何创建线程并打印其名字。在实际应用中,线程命名应清晰、唯一且避免特殊字符,以提高代码可读性和维护性。多线程编程需注意线程安全、死锁、性能优化等问题。通过合理设计和测试,可以利用多线程提高程序并发性和效率。
6 1
|
8天前
|
数据处理 调度 Python
Python并发编程实战指南:深入理解线程(threading)与进程(multiprocessing)的奥秘,打造高效并发应用!
【7月更文挑战第8天】Python并发编程探索:使用`threading`模块创建线程处理任务,虽受限于GIL,适合I/O密集型工作。而`multiprocessing`模块通过进程实现多核利用,适用于CPU密集型任务。通过实例展示了线程和进程的创建与同步,强调了根据任务类型选择合适并发模型的重要性。
|
6天前
|
数据库 数据安全/隐私保护 C++
Python并发编程实战:线程(threading)VS进程(multiprocessing),谁才是并发之王?
【7月更文挑战第10天】Python并发对比:线程轻量级,适合I/O密集型任务,但受GIL限制;进程绕过GIL,擅CPU密集型,但通信成本高。选择取决于应用场景,线程利于数据共享,进程利于多核利用。并发无“王者”,灵活运用方为上策。
|
7天前
|
安全 API 调度
深度剖析:Python并发编程中的线程与进程,那些你不可不知的使用技巧与限制!
【7月更文挑战第9天】Python并发:线程适合IO密集型任务,利用GIL下的多线程同步,如示例中使用锁。进程适用于CPU密集型,通过multiprocessing模块实现多进程,利用进程间通信如队列。线程受限于GIL,进程间通信成本高。选择取决于任务需求和性能目标。
13 2
|
8天前
|
大数据 API 数据处理
Python高手都在用的并发秘籍:解锁线程与进程的终极奥义,性能飙升不是梦!
【7月更文挑战第8天】Python并发编程提升性能,线程(threading)适合I/O密集型任务,如网络请求,通过`start()`和`join()`实现并发。进程(multiprocessing)利用多核CPU,适用于CPU密集型任务,如大数据处理。结合两者可优化混合任务,实现最佳并发效果。
10 1