【JAVA日志】关于日志系统的架构讨论

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 【JAVA日志】关于日志系统的架构讨论

1.日志系统概述

关于日志系统,其要支撑的核心能力无非是日志的存储以及查看,最好的查看方式当然是实现可视化。目前市面上有成熟的解决方案——ELK,即elastic search+logstash+kibana。前文中我们已经聊过了ELK这条线,本文主要就是基于ELK并在其中加一个MQ作为中间层来流量削峰、异步写日志。

这里首先要声明的是,虽然本文在日志系统中使用到了MQ,但MQ真的是必要的嘛?

这个要看系统的体量了。除非是超大型的分布式架构,服务上百个并且并发量较高,才会考虑用MQ来做一层缓存从而来降低IO压力。如果不是上述情况的话是没有必要上MQ来做一个中间层的。日志作为系统中掺入的"沙子",其量本来就不会很大,一次API调用平均能产生一条日志吗?其实是不见的是吧。所以就这点数据量上MQ这种吞吐量的中间层简直就是杀鸡用牛刀,过度设计,徒增了系统的复杂度了。MQ更多的时候是拿来做移步任务或者定时任务的,用来做业务上的流量削峰或者异步的去做些事情。比如异步的下订单、订单超时取消等。绝大多数时候我们的日志系统的架构,直接让存储去直面日志IO都是能轻轻松松顶得住的。所谓的让存储去直面日志的IO是什么意思?就是比如我走了ELK这条线,那么就直接讲日志往es里面丢就对了。ELK这么用前面已经有文章介绍过了。本文还是聊一聊假设真的到了很极限的中间需要引入MQ的情况。

2.环境搭建

ELK相关内容:

MQ我们选择rabbitMQ,作为一个开箱即食的MQ,rabbitMQ的下载安装网上文章车载斗量,此处就不赘述了。

3.应用如何推日志到MQ

写日志肯定是JAVA的日志框架来负责的,前面有文章已经详细的介绍了JAVA的日志框架:

【JAVA日志框架】JUL,JDK原生日志框架详解。_jul jdk-CSDN博客

JAVA的日志框架总的来说架构都是大同小异的,都是由不同的appender(有的里面叫handler其实都是一个东西)来向不同的地方写日志:


7306da3adadc424ea541bd09a1bafcfa.png


既然要往rabbitMQ里面写日志,那当然就要一个rabbitMQ的appender了。这个appender在哪里?在rabbitMQ的JAVA API依赖中:

<dependency>
        <groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-amqp</artifactId>
</dependency>
<dependency>
        <groupId>org.springframework.amqp</groupId>
        <artifactId>spring-rabbit</artifactId>
</dependency>
 

然后配置一下日志框架的配置文件即可,这里我们以spring boot默认的日志框架logback为例,在其配置文件中配置好rabbitMQ的appender即可:

<configuration>

    <!-- 定义 RabbitMQ 连接 -->
    <appender name="RABBIT" class="com.github.logback.amqp.AmqpAppender">
        <host>localhost</host> <!-- RabbitMQ 主机地址 -->
        <port>5672</port> <!-- RabbitMQ 端口 -->
        <username>guest</username> <!-- RabbitMQ 用户名 -->
        <password>guest</password> <!-- RabbitMQ 密码 -->
        <exchange>logs</exchange> <!-- RabbitMQ 交换机 -->
        <routingKey>logstash</routingKey> <!-- RabbitMQ 路由键 -->
        <declareExchange>true</declareExchange> <!-- 是否声明交换机 -->
        <exchangeType>fanout</exchangeType> <!-- 交换机类型 -->
        <durable>true</durable> <!-- 是否持久化消息 -->
        <applicationId>myApplication</applicationId> <!-- 应用程序标识 -->
        <!-- 其他可选配置 -->
        <!--<declareQueue>true</declareQueue>-->
        <!--<queue>logQueue</queue>-->
        <!--<declareBinding>true</declareBinding>-->
    </appender>

    <!-- 定义日志输出格式 -->
    <layout class="ch.qos.logback.classic.PatternLayout">
        <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{36} - %msg%n</Pattern>
    </layout>

    <!-- 根日志输出到 RabbitMQ -->
    <root level="INFO">
        <appender-ref ref="RABBIT"/>
    </root>
</configuration>
 

4.logstash如何去MQ中取日志

logstash的input可以理解为插件,既然是插件当然就有很多中类型,其中就包括rabbitMQ的(自然也有其它的),下面是logstash从MQ中取数据然后推给es的一份示例:

input {
  rabbitmq {
    host => "localhost"           # RabbitMQ 主机地址
    port => 5672                  # RabbitMQ 端口
    user => "guest"               # RabbitMQ 用户名
    password => "guest"           # RabbitMQ 密码
    queue => "logQueue"           # RabbitMQ 队列名
    durable => true               # 是否持久化队列
    ack => true                   # 是否需要手动确认消息
    threads => 1                  # 线程数
  }
}

output {
  stdout { codec => rubydebug }   # 输出到控制台,可选
  
  elasticsearch {
    hosts => ["localhost:9200"]    # Elasticsearch 主机地址
    index => "logstash-%{+YYYY.MM.dd}"  # Elasticsearch 索引名
  }
}
 

5.如何兼顾分布式链路追踪

这里顺带讨论一个问题,就是在ELK体系中如何去实现分布式链路跟踪。分布式链路跟踪相关内容前面有文章详细讨论过:

https://bugman.blog.csdn.net/article/details/135258207?spm=1001.2014.3001.5502


https://bugman.blog.csdn.net/article/details/135258207?spm=1001.2014.3001.5502

 其实在ELK中实现分布式链路追踪的方式很简单,思路如下:


仍然在应用侧上链路追踪技术来统一日志格式,然后要进行查询追踪的时候直接使用Kibana的搜索和过滤功能来仅显示与特定跟踪ID或请求ID相关的日志消息,或者利用Kibana的图表功能,将日志数据与分布式追踪数据结合起来,创建可视化的图表和仪表板。你可以根据需要显示请求的整个路径、每个步骤的响应时间、错误率等指标。

相关实践学习
日志服务之使用Nginx模式采集日志
本文介绍如何通过日志服务控制台创建Nginx模式的Logtail配置快速采集Nginx日志并进行多维度分析。
目录
相关文章
|
1月前
|
人工智能 前端开发 编译器
【AI系统】LLVM 架构设计和原理
本文介绍了LLVM的诞生背景及其与GCC的区别,重点阐述了LLVM的架构特点,包括其组件独立性、中间表示(IR)的优势及整体架构。通过Clang+LLVM的实际编译案例,展示了从C代码到可执行文件的全过程,突显了LLVM在编译器领域的创新与优势。
51 3
|
21天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
141 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
5天前
|
Java Maven
java项目中jar启动执行日志报错:no main manifest attribute, in /www/wwwroot/snow-server/z-server.jar-jar打包的大小明显小于正常大小如何解决
在Java项目中,启动jar包时遇到“no main manifest attribute”错误,且打包大小明显偏小。常见原因包括:1) Maven配置中跳过主程序打包;2) 缺少Manifest文件或Main-Class属性。解决方案如下:
java项目中jar启动执行日志报错:no main manifest attribute, in /www/wwwroot/snow-server/z-server.jar-jar打包的大小明显小于正常大小如何解决
|
14天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
50 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
25天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
80 32
|
25天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
54 4
【AI系统】计算图优化架构
|
10天前
|
机器学习/深度学习 存储 人工智能
基于AI的实时监控系统:技术架构与挑战分析
AI视频监控系统利用计算机视觉和深度学习技术,实现实时分析与智能识别,显著提升高风险场所如监狱的安全性。系统架构包括数据采集、预处理、行为分析、实时决策及数据存储层,涵盖高分辨率视频传输、图像增强、目标检测、异常行为识别等关键技术。面对算法优化、实时性和系统集成等挑战,通过数据增强、边缘计算和模块化设计等方法解决。未来,AI技术的进步将进一步提高监控系统的智能化水平和应对复杂安全挑战的能力。
|
15天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
49 3
|
13天前
|
前端开发 搜索推荐 安全
陪玩系统架构设计陪玩系统前后端开发,陪玩前端设计是如何让人眼前一亮的?
陪玩系统的架构设计、前后端开发及前端设计是构建吸引用户、功能完善的平台关键。架构需考虑用户需求、技术选型、安全性等,确保稳定性和扩展性。前端可选用React、Vue或Uniapp,后端用Spring Boot或Django,数据库结合MySQL和MongoDB。功能涵盖用户管理、陪玩者管理、订单处理、智能匹配与通讯。安全性方面采用SSL加密和定期漏洞扫描。前端设计注重美观、易用及个性化推荐,提升用户体验和平台粘性。
43 0
|
28天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
97 15