【文档数据库】ES和MongoDB的对比

简介: 【文档数据库】ES和MongoDB的对比

1.由文档存储牵出的问题

本文或者说关于mongodb的这个系列文章的源头:

前面我们聊过了分布式链路追踪系统,在基于日志实现的分布式链路追踪的方式seluth+zipkin中为了防止数据丢失,需要将数据持久化。我们给出的是持久化进mysql中的示例。

聊完ES后,这时候我们难免就避不开mongodb这个热门的文档数据库,什么是MongoDB,MongoDB的核心概念,ES和MongoDB的对比,将会是本文的核心内容。

2.什么是MongoDB?

MongoDB(由“Humongous Database”缩写而来)是一种开源的、面向文档的 NoSQL 数据库系统,自4.0版本开始支持ACID。它在设计上采用了分布式文件存储的思想,适用于大规模数据的存储和处理。

说的直白点,MongoDB在设计的时候就是冲着解决海量文档的存储来的。

mongodb的架构如下:

database(数据库):数据库是一个仓库,里面可以存放集合。

collection(集合):类似于数组,可以在集合中存放文档。

document(文档):mongodb最小的单位,我们存储和操作的内容都是文档。

数据库类比数据库,集合类比表,文档类比一条数据。

数据库和集合都不需要我们手动创建,当我们创建文档时,文档所在的数据库或者集合不存在,会自动创建数据库和集合。

mongodb的数据结构:


MongoDB的数据结构是其用来应对海量文档存储的核心,其是以类JSON的方式来存储数据,也就是BSON。BSON是二进制的,这样做的目的是为了增强存储能力,具体的细节后文说。先来看看JSON和BSON的比较:


假设我们有如下的 JSON 对象,用于描述一个人的基本信息:


这个 JSON 对象包含了一些基本的数据类型,如字符串、数字、布尔值、对象和数组。

{
  "name": "John Doe",
  "age": 30,
  "isStudent": false,
  "birthday": "1990-01-01",
  "address": {
    "street": "123 Main St",
    "city": "Anytown"
  },
  "hobbies": ["reading", "cycling"]
}
 

现在,我们将同样的数据转换为 BSON 格式。在 BSON 中,我们可以使用一些 JSON 中不存在的数据类型。以下是 BSON 版本的同一数据,包含一些 BSON 特有的字段(请注意,这是概念性的表示,因为 BSON 实际上是二进制格式,无法以纯文本形式直观展示):

{
  "name": "John Doe",                // 字符串
  "age": Int32(30),                  // 32位整数
  "isStudent": false,                // 布尔值
  "birthday": ISODate("1990-01-01"), // 日期类型
  "address": {                       // 嵌套文档
    "street": "123 Main St",
    "city": "Anytown"
  },
  "hobbies": ["reading", "cycling"]// 数组
}
 

在这个 BSON 示例中,我们可以看到一些与 JSON最大的不同就是其数据是有类型的,BSON最是二进制的,有类型声明这样能准确的从二进制里解析出准确的值来,从而避免了还要转一遍的这种解析过程。所有我们可以看到BSON是很适合用来进行文档存储的,二进制化后减小了原始数据的体积,又由于有类型的存在,能直接读出来,又很适合检索。

3.ES和MongoDB的对比

其实到这里很多人都会有疑惑,ES和MongoDB都能存储海量文档,都支持文档的搜索,很多功能上都是高度重合的,那为什么会出现如此相似的两个东西?他们各自的应用场景有什么不同?

首先我们要知道:

全文搜索和文档存储在某种程度上可以被视为对立的或至少是有着不同优化方向的技术,也就是说二者是不能相互兼顾的,只能二选一。

  1. 全文搜索的特点:
  • 全文搜索的核心在于能够快速有效地检索出包含特定词汇或词组的文档。
  • 为此,搜索引擎(如 Elasticsearch)建立复杂的索引来存储每个词汇的出现位置、频率等信息。
  • 这些索引通常需要快速访问,因此搜索引擎可能会牺牲一些存储效率来提高读取速度。
  1. 文档存储的特点:
  • 文档存储(如 MongoDB)主要关注于存储和查询结构化或半结构化数据。
  • 这些系统可能采用不同的存储优化技术,如数据压缩、分片等,以提高存储效率和处理大量数据的能力。
  • 文档数据库的索引通常不是为了全文搜索设计的,而是为了快速查找特定字段或数据结构。
  1. 优化方向的差异:
  • 全文搜索引擎的设计重点在于最大化检索效率,特别是在处理大量文本数据时的搜索性能。
  • 文档数据库则更侧重于数据的灵活性、存储效率和结构化查询的性能。

OK,到这里其实我们就已经知道了ES和MongoDB最核心的区别了,也就不会疑惑。也可以得出:

es拥有更细粒度的查询能力,也就是能对全文进行各种检索,但在文档的存储上要差一点。

MongoDB在文档的存储上更优秀,适合存储海量文档,但是只支持简单的文档搜索,而不是全文检索。

目录
相关文章
|
6月前
|
NoSQL MongoDB 数据库
数据库数据恢复—MongoDB数据库数据恢复案例
MongoDB数据库数据恢复环境: 一台操作系统为Windows Server的虚拟机上部署MongoDB数据库。 MongoDB数据库故障: 工作人员在MongoDB服务仍然开启的情况下将MongoDB数据库文件拷贝到其他分区,数据复制完成后将MongoDB数据库原先所在的分区进行了格式化操作。 结果发现拷贝过去的数据无法使用。管理员又将数据拷贝回原始分区,MongoDB服务仍然无法使用,报错“Windows无法启动MongoDB服务(位于 本地计算机 上)错误1067:进程意外终止。”
|
6月前
|
缓存 NoSQL Linux
在CentOS 7系统中彻底移除MongoDB数据库的步骤
以上步骤完成后,MongoDB应该会从您的CentOS 7系统中被彻底移除。在执行上述操作前,请确保已经备份好所有重要数据以防丢失。这些步骤操作需要一些基本的Linux系统管理知识,若您对某一步骤不是非常清楚,请先进行必要的学习或咨询专业人士。在执行系统级操作时,推荐在实施前创建系统快照或备份,以便在出现问题时能够恢复到原先的状态。
549 79
|
6月前
|
存储 NoSQL MongoDB
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
311 8
MongoDB数据库详解-针对大型分布式项目采用的原因以及基础原理和发展-卓伊凡|贝贝|莉莉
|
5月前
|
运维 NoSQL 容灾
告别运维噩梦:手把手教你将自建 MongoDB 平滑迁移至云数据库
程序员为何逃离自建MongoDB?扩容困难、运维复杂、高可用性差成痛点。阿里云MongoDB提供分钟级扩容、自动诊断与高可用保障,助力企业高效运维、降本增效,实现数据库“无感运维”。
|
9月前
|
Java 数据库
jsp CRM客户管理系统(含数据库脚本以及文档)
jsp CRM客户管理系统(含数据库脚本以及文档)
204 10
|
9月前
|
NoSQL MongoDB 数据库
数据库数据恢复——MongoDB数据库服务无法启动的数据恢复案例
MongoDB数据库数据恢复环境: 一台Windows Server操作系统虚拟机上部署MongoDB数据库。 MongoDB数据库故障: 管理员在未关闭MongoDB服务的情况下拷贝数据库文件。将MongoDB数据库文件拷贝到其他分区后,对MongoDB数据库所在原分区进行了格式化操作。格式化完成后将数据库文件拷回原分区,并重新启动MongoDB服务。发现服务无法启动并报错。
|
10月前
|
存储 NoSQL MongoDB
微服务——MongoDB常用命令1——数据库操作
本节介绍了 MongoDB 中数据库的选择、创建与删除操作。使用 `use 数据库名称` 可选择或创建数据库,若数据库不存在则自动创建。通过 `show dbs` 或 `show databases` 查看所有可访问的数据库,用 `db` 命令查看当前数据库。注意,集合仅在插入数据后才会真正创建。数据库命名需遵循 UTF-8 格式,避免特殊字符,长度不超过 64 字节,且部分名称如 `admin`、`local` 和 `config` 为系统保留。删除数据库可通过 `db.dropDatabase()` 实现,主要用于移除已持久化的数据库。
691 0
|
10月前
|
存储 NoSQL MongoDB
从 MongoDB 到 时序数据库 TDengine,沃太能源实现 18 倍写入性能提升
沃太能源是国内领先储能设备生产厂商,数十万储能终端遍布世界各地。此前使用 MongoDB 存储时序数据,但随着设备测点增加,MongoDB 在存储效率、写入性能、查询性能等方面暴露出短板。经过对比,沃太能源选择了专业时序数据库 TDengine,生产效能显著提升:整体上,数据压缩率超 10 倍、写入性能提升 18 倍,查询在特定场景上也实现了数倍的提升。同时减少了技术架构复杂度,实现了零代码数据接入。本文将对 TDengine 在沃太能源的应用情况进行详解。
502 0
|
4月前
|
缓存 关系型数据库 BI
使用MYSQL Report分析数据库性能(下)
使用MYSQL Report分析数据库性能
418 158
|
4月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。

推荐镜像

更多