k-近邻算法(kNN)

简介: k-近邻算法(kNN)

k-近邻算法概述

优点:精度高、对异常值不敏感、无数据输入假定

缺点:计算复杂度高、空间复杂度

适用数据范围:数值型和标称型


k-近邻算法的一般流程

(1)收集数据

(2)准备数据

(3)分析数据

(4)训练算法(不需要)

(5)测试算法

(6)使用算法

from numpy import *
import operator
def createDataSet():
  group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]])
  labels = ['A', 'A', 'B', 'B']
  return group, labels
group, labels = createDataSet()
group
array([[1. , 1.1],
       [1. , 1. ],
       [0. , 0. ],
       [0. , 0.1]])
labels
import matplotlib.pyplot as plt
x = group[:, 0]
y = group[:, 1]
plt.scatter(x, y)
plt.xlim(-0.2, 1.2)
plt.ylim(-0.2, 1.2)
for i, pos in enumerate(zip(x, y)):
    plt.text(pos[0]-0.01, pos[1], f'{labels[i]}', ha='right')
plt.show()

kNN算法伪代码

对未知类别属性的数据集中的每个点依次执行以下操作:

(1)计算已知类别数据集中的点与当前点之间的距离

(2)按照距离递增的次序排列

(3)选取与当前点距离最小的k个点

(4)确定前k个点所在类别的出现频率

(5)返回前k个点出现频率最高的类别作为当前点的预测分类

def classify0(inX, dataSet, labels, k):
  dataSetSize = dataSet.shape[0]
  diffMat = tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances**0.5
  sortedDistIndicies = distances.argsort()
  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]
classify0([0, 0], group, labels, 3)

'B'


这段代码实现了k近邻算法中的分类函数,用于根据输入的数据点inX,在数据集dataSet中找到距离最近的k个邻居,并统计它们的类别标签,最终返回频率最高的类别。

现在让我们逐步分析这段代码:

  1. dataSetSize = dataSet.shape[0]: 获取数据集的行数,即数据点的数量。
  2. diffMat = tile(inX, (dataSetSize, 1)) - dataSet: 将输入数据点inX复制成与数据集相同大小的矩阵,然后计算与数据集中每个点的差值。
  3. sqDiffMat = diffMat ** 2: 对差值矩阵的每个元素进行平方操作。
  4. sqDistances = sqDiffMat.sum(axis=1): 沿着列的方向对平方差值矩阵进行求和,得到每个数据点与输入点的平方距离。
  5. distances = sqDistances**0.5: 对平方距离进行开方,得到真实距离。
  6. sortedDistIndicies = distances.argsort(): 对距离进行排序,返回排序后的索引值。
  7. classCount = {}: 初始化一个空字典,用于存储每个类别的投票数。
  8. for i in range(k):: 遍历前k个最小距离的索引。
  9. voteIlabel = labels[sortedDistIndicies[i]]: 获取对应索引的类别标签。
  10. classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1: 统计每个类别的投票数,使用get方法获取字典中的值,如果键不存在则返回默认值0。
  11. sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True): 对字典按照值进行排序,items()方法返回字典的键值对,key=operator.itemgetter(1)表示按照值排序,reverse=True表示降序排列。
  12. return sortedClassCount[0][0]: 返回排序后的字典中频率最高的类别标签,即k个邻居中出现最多的类别。


这个函数的核心思想是通过计算输入点与数据集中每个点的距离,找到距离最近的k个邻居,然后通过投票机制确定输入点的类别。


目录
相关文章
|
1天前
|
机器学习/深度学习 算法
基于鲸鱼优化的knn分类特征选择算法matlab仿真
**基于WOA的KNN特征选择算法摘要** 该研究提出了一种融合鲸鱼优化算法(WOA)与K近邻(KNN)分类器的特征选择方法,旨在提升KNN的分类精度。在MATLAB2022a中实现,WOA负责优化特征子集,通过模拟鲸鱼捕食行为的螺旋式和包围策略搜索最佳特征。KNN则用于评估特征子集的性能。算法流程包括WOA参数初始化、特征二进制编码、适应度函数定义(以分类准确率为基准)、WOA迭代搜索及最优解输出。该方法有效地结合了启发式搜索与机器学习,优化特征选择,提高分类性能。
|
2天前
|
机器学习/深度学习 存储 算法
K 近邻算法(二)
K-近邻(KNN)算法是一种监督学习方法,用于分类和回归。关键步骤包括计算新样本与训练样本的距离,选择合适的邻近样本数K,基于K个邻居的多数类别或平均值做出预测。K值的选择影响模型性能:小K易受噪声影响(过拟合),大K可能导致模型过于简单(欠拟合)。评估模型通常使用测试集的预测准确率,如sklearn.metrics.accuracy_score。最优K值可通过交叉验证,如GridSearchCV,来确定,但它可能计算密集。KNN常用于手写数字识别等任务,如MNIST数据集。
|
2天前
|
机器学习/深度学习 数据采集 算法
K 近邻算法(一)
本文介绍了KNN算法的基本概念、步骤、优缺点,以及在图像识别、文本分类、回归预测、医疗诊断和金融风控等领域的应用。重点讲解了数据预处理、模型训练、评估方法和参数选择策略,包括K值确定、交叉验证和GridSearchCV的使用。
|
3天前
|
机器学习/深度学习 数据采集 算法
KNN算法原理及应用(一)
**KNN算法**是一种监督学习的分类算法,适用于解决分类问题。它基于实例学习,无需训练过程,当新样本到来时,通过计算新样本与已有训练样本之间的距离,找到最近的K个邻居,然后根据邻居的类别进行多数表决(或加权表决)来预测新样本的类别。K值的选择、距离度量方式和分类决策规则是KNN的关键要素。KNN简单易懂,但计算复杂度随样本量增加而增加,适用于小规模数据集。在鸢尾花数据集等经典问题上表现良好,同时能处理多分类任务,并可应用于回归和数据预处理中的缺失值填充。
KNN算法原理及应用(一)
|
12天前
|
算法 Python
使用k-近邻算法改进约会网站的配对效果(kNN)
使用k-近邻算法改进约会网站的配对效果(kNN)
21 6
|
3天前
|
算法
KNN算法原理及应用(二)
不能将所有数据集全部用于训练,为了能够评估模型的泛化能力,可以通过实验测试对学习器的泛化能力进行评估,进而做出选择。因此需要使用一个测试集来测试学习器对新样本的判别能力。
|
3天前
|
算法
基于蝗虫优化的KNN分类特征选择算法的matlab仿真
摘要: - 功能:使用蝗虫优化算法增强KNN分类器的特征选择,提高分类准确性 - 软件版本:MATLAB2022a - 核心算法:通过GOA选择KNN的最优特征以改善性能 - 算法原理: - KNN基于最近邻原则进行分类 - 特征选择能去除冗余,提高效率 - GOA模仿蝗虫行为寻找最佳特征子集,以最大化KNN的验证集准确率 - 运行流程:初始化、评估、更新,直到达到停止标准,输出最佳特征组合
|
4天前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】近邻类模型:KNN算法在数据科学中的实践与探索
【机器学习】近邻类模型:KNN算法在数据科学中的实践与探索
24 0
|
2天前
|
机器学习/深度学习 算法 数据可视化
基于BP神经网络的64QAM解调算法matlab性能仿真
**算法预览图省略** MATLAB 2022A版中,运用BP神经网络进行64QAM解调。64QAM通过6比特映射至64复数符号,提高数据速率。BP网络作为非线性解调器,学习失真信号到比特的映射,对抗信道噪声和多径效应。网络在处理非线性失真和复杂情况时展现高适应性和鲁棒性。核心代码部分未显示。
|
4天前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
21 6