Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】(2)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】

Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】(1)https://developer.aliyun.com/article/1532272

4.2、

1)创建表

(1)语法

CREATE TABLE [IF NOT EXISTS] [catalog_name.][db_name.]table_name
 
  (
    -- 正常的列 以及 元数据(比如Kafka数据携带的时间戳...)
    { <physical_column_definition> | <metadata_column_definition> | <computed_column_definition> }[ , ...n]
    -- 水印
    [ <watermark_definition> ]
    -- 表的限制,比如主键
    [ <table_constraint> ][ , ...n]
 
  )
  -- 给表添加注释
  [COMMENT table_comment]
  -- 像 hive 一样 partition by
  [PARTITIONED BY (partition_column_name1, partition_column_name2, ...)]
  -- with 里面指定这张表的一些属性和参数,比如连接器...
  WITH (key1=val1, key2=val2, ...)
 
  [ LIKE source_table [( <like_options> )] | AS select_query ]

① physical_column_definition

       物理列是数据库中所说的常规列。其定义了物理介质中存储的数据中字段的名称、类型和顺序。其他类型的列可以在物理列之间声明,但不会影响最终的物理列的读取。

metadata_column_definition

       元数据列是 SQL 标准的扩展,允许访问数据源本身具有的一些元数据。元数据列由 METADATA 关键字标识。例如,我们可以使用元数据列从Kafka记录中读取和写入时间戳,用于基于时间的操作(这个时间戳不是数据中的某个时间戳字段,而是数据写入 Kafka 时,Kafka 引擎给这条数据打上的时间戳标记)。connector和format文档列出了每个组件可用的元数据字段。

CREATE TABLE MyTable (
 
  `user_id` BIGINT,
 
  `name` STRING,
  -- 把元数据赋值给 record_time 字段
  `record_time` TIMESTAMP_LTZ(3) METADATA FROM 'timestamp'
 
) WITH (
 
  'connector' = 'kafka'
 
  ...
 
);

如果自定义的列名称和 Connector 中定义 metadata 字段的名称一样, FROM xxx 子句可省略

CREATE TABLE MyTable (
 
`user_id` BIGINT,
 
`name` STRING,
 
`timestamp` TIMESTAMP_LTZ(3) METADATA
 
) WITH (
 
'connector' = 'kafka'
 
...
 
);

如果自定义列的数据类型和 Connector 中定义的 metadata 字段的数据类型不一致,程序运行时会自动 cast强转,但是这要求两种数据类型是可以强转的。

CREATE TABLE MyTable (
 
`user_id` BIGINT,
 
`name` STRING,
 
-- 将时间戳强转为 BIGINT
 
`timestamp` BIGINT METADATA
 
) WITH (
 
'connector' = 'kafka'
 
...
 
);

默认情况下,Flink SQL planner 认为 metadata 列可以读取和写入。然而,在许多情况下,外部系统提供的只读元数据字段比可写字段多。因此,可以使用 VIRTUAL 关键字排除元数据列的持久化(表示只读)。

CREATE TABLE MyTable (
  -- 可读可写
  `timestamp` BIGINT METADATA,
  -- 只读
  `offset` BIGINT METADATA VIRTUAL,
 
  `user_id` BIGINT,
 
  `name` STRING,
 
) WITH (
 
  'connector' = 'kafka'
 
  ...
 
);

computed_column_definition

计算列是使用语法column_name AS computed_column_expression生成的虚拟列。

计算列就是拿已有的一些列经过一些自定义的运算生成的新列,在物理上并不存储在表中,只能读不能写。列的数据类型从给定的表达式自动派生,无需手动声明。

CREATE TABLE MyTable (
 
  `user_id` BIGINT,
 
  `price` DOUBLE,
 
  `quantity` DOUBLE,
  -- 把 price 列和 quanitity 列的值的乘积作为一个新列
  `cost` AS price * quanitity
 
) WITH (
 
  'connector' = 'kafka'
 
  ...
 
);

④ 定义Watermark

Flink SQL 提供了几种 WATERMARK 生产策略:

  • 严格升序:WATERMARK FOR rowtime_column AS rowtime_column。

Flink 任务认为时间戳只会越来越大,也不存在相等的情况,只要相等或者小于之前的,就认为是迟到的数据。

  • 递增:WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '0.001' SECOND

一般基本不用这种方式。如果设置此类,则允许有相同的时间戳出现。

  • 有界无序: WATERMARK FOR rowtime_column AS rowtime_column – INTERVAL 'string' timeUnit 。

此类策略就可以用于设置最大乱序时间,假如设置为 WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '5' SECOND ,则生成的是运行 5s 延迟的Watermark。一般都用这种 Watermark 生成策略,此类 Watermark 生成策略通常用于有数据乱序的场景中,而对应到实际的场景中,数据都是会存在乱序的,所以基本都使用此类策略。

⑤ PRIMARY KEY

主键约束表明表中的一列或一组列是唯一的,并且它们不包含NULL值主键唯一地标识表中的一行,只支持 not enforced(这是语法规则,必须加上)。

CREATE TABLE MyTable (
 
`user_id` BIGINT,
 
`name` STRING,
 
PARYMARY KEY(user_id) not enforced
 
) WITH (
 
'connector' = 'kafka'
 
...
 
);

⑥ PARTITIONED BY

创建分区表

⑦ with语句

用于创建表的表属性,用于指定外部存储系统的元数据信息。配置属性时,表达式key1=val1的键和值都应该是字符串字面值。如下是Kafka的映射表:

CREATE TABLE KafkaTable (
 
`user_id` BIGINT,
 
`name` STRING,
 
`ts` TIMESTAMP(3) METADATA FROM 'timestamp'
 
) WITH (
 
'connector' = 'kafka',
 
'topic' = 'user_behavior',
 
'properties.bootstrap.servers' = 'localhost:9092',
 
'properties.group.id' = 'testGroup',
 
'scan.startup.mode' = 'earliest-offset',
 
'format' = 'csv'
 
)

一般 with 中的配置项由 Flink SQL 的 Connector(链接外部存储的连接器) 来定义,每种 Connector 提供的with 配置项都是不同的。

⑧ LIKE

用于基于现有表的定义创建表。此外,用户可以扩展原始表或排除表的某些部分。

可以使用该子句重用(可能还会覆盖)某些连接器属性,或者向外部定义的表添加水印。

CREATE TABLE Orders (
 
    `user` BIGINT,
 
    product STRING,
 
    order_time TIMESTAMP(3)
 
) WITH (
 
    'connector' = 'kafka',
 
    'scan.startup.mode' = 'earliest-offset'
 
);
CREATE TABLE Orders_with_watermark (
 
    -- Add watermark definition
 
    WATERMARK FOR order_time AS order_time - INTERVAL '5' SECOND
 
) WITH (
 
    -- Overwrite the startup-mode
 
    'scan.startup.mode' = 'latest-offset'
 
)
 
LIKE Orders;

⑨ AS select_statement(CTAS)

在一个create-table-as-select (CTAS)语句中,还可以通过查询的结果创建和填充表。CTAS是使用单个命令创建数据并向表中插入数据的最简单、最快速的方法。

CREATE TABLE my_ctas_table
 
WITH (
 
    'connector' = 'kafka',
 
    ...
 
)
 
AS SELECT id, name, age FROM source_table WHERE mod(id, 10) = 0;

注意:CTAS有以下限制:

  • 暂不支持创建临时表。
  • 目前还不支持指定显式列(create table 后面不能自己写列字段)。
  • 还不支持指定显式水印(不能自己添加水印)。
  • 目前还不支持创建分区表。
  • 目前还不支持指定主键约束。

(2)简单建表示例

创建一个 test 表,指定连接器为 print :

用 like 关键字创建一个结构和 test 表一样的表 test1 并在它的基础上增加一个字段 value:

使用查询结果来新建一个表:

我们可以看到,我们表 test 的查询结果只能被当做一个 Sink 来使用(也就是只能被插入),不能被当做输入源。

2)查看表

(1)查看所有表

SHOW TABLES [ ( FROM | IN ) [catalog_name.]database_name ] [ [NOT] LIKE <sql_like_pattern> ]

如果没有指定数据库,则从当前数据库返回表。

LIKE子句中sql pattern的语法与MySQL方言的语法相同:

  • %匹配任意数量的字符,甚至零字符,\%匹配一个'%'字符。
  • _只匹配一个字符,\_只匹配一个'_'字符

(2)查看表信息

{ DESCRIBE | DESC } [catalog_name.][db_name.]table_name

3)修改表

(1)修改表名

ALTER TABLE [catalog_name.][db_name.]table_name RENAME TO new_table_name

(2)修改表属性

ALTER TABLE [catalog_name.][db_name.]table_name SET (key1=val1, key2=val2, ...)

表的属性,比如连接器等。

4)删除表

DROP [TEMPORARY] TABLE [IF EXISTS] [catalog_name.][db_name.]table_name

Flink(十三)【Flink SQL(上)SqlClient、DDL、查询】(3)https://developer.aliyun.com/article/1532278

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4天前
|
SQL 运维 监控
SQL查询太慢?实战讲解YashanDB SQL调优思路
本文是Meetup第十期“调优实战专场”的第二篇技术文章,上一篇《高效查询秘诀,解码YashanDB优化器分组查询优化手段》中,我们揭秘了YashanDB分组查询优化秘诀,本文将通过一个案例,助你快速上手YashanDB慢日志功能,精准定位“慢SQL”后进行优化。
|
1天前
|
SQL 大数据 数据挖掘
玩转大数据:从零开始掌握SQL查询基础
玩转大数据:从零开始掌握SQL查询基础
63 35
|
21天前
|
SQL 关系型数据库 分布式数据库
利用 PolarDB PG 版向量化引擎,加速复杂 SQL 查询!完成任务领发财新年抱枕!
利用 PolarDB PG 版向量化引擎,加速复杂 SQL 查询!完成任务领发财新年抱枕!
|
12天前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
29 1
|
1天前
|
SQL 索引
【YashanDB知识库】字段加上索引后,SQL查询不到结果
【YashanDB知识库】字段加上索引后,SQL查询不到结果
|
2月前
|
SQL 大数据 数据处理
Flink SQL 详解:流批一体处理的强大工具
Flink SQL 是为应对传统数据处理框架中流批分离的问题而诞生的,它融合了SQL的简洁性和Flink的强大流批处理能力,降低了大数据处理门槛。其核心工作原理包括生成逻辑执行计划、查询优化和构建算子树,确保高效执行。Flink SQL 支持过滤、投影、聚合、连接和窗口等常用算子,实现了流批一体处理,极大提高了开发效率和代码复用性。通过统一的API和语法,Flink SQL 能够灵活应对实时和离线数据分析场景,为企业提供强大的数据处理能力。
269 26
|
2月前
|
SQL NoSQL Java
Java使用sql查询mongodb
通过MongoDB Atlas Data Lake或Apache Drill,可以在Java中使用SQL语法查询MongoDB数据。这两种方法都需要适当的配置和依赖库的支持。希望本文提供的示例和说明能够帮助开发者实现这一目标。
61 17
|
2月前
|
SQL Oracle 关系型数据库
如何在 Oracle 中配置和使用 SQL Profiles 来优化查询性能?
在 Oracle 数据库中,SQL Profiles 是优化查询性能的工具,通过提供额外统计信息帮助生成更有效的执行计划。配置和使用步骤包括:1. 启用自动 SQL 调优;2. 手动创建 SQL Profile,涉及收集、执行调优任务、查看报告及应用建议;3. 验证效果;4. 使用 `DBA_SQL_PROFILES` 视图管理 Profile。
|
20天前
|
SQL 数据可视化 IDE
SQL做数据分析的困境,查询语言无法回答的真相
SQL 在简单数据分析任务中表现良好,但面对复杂需求时显得力不从心。例如,统计新用户第二天的留存率或连续活跃用户的计算,SQL 需要嵌套子查询和复杂关联,代码冗长难懂。Python 虽更灵活,但仍需变通思路,复杂度较高。相比之下,SPL(Structured Process Language)语法简洁、支持有序计算和分组子集保留,具备强大的交互性和调试功能,适合处理复杂的深度数据分析任务。SPL 已开源免费,是数据分析师的更好选择。
|
SQL 程序员 数据库
SQL四种语言:DDL,DML,DCL,TCL
1.DDL(Data Definition Language)数据库定义语言statements are used to define the database structure or schema. DDL是SQL语言的四大功能之一。
1644 0