图像处理之六边形网格分割效果

简介: 图像处理之六边形网格分割效果

一:原理

根据输入参数blockSize的大小,将图像分块,决定每块的中心通过该像素块内所有

像素之和的均值与该块内部每个像素比较,RGB值之间几何距离最小为新的中心,迭

代更新运算,直到达到输入参数声明的最大循环次数为止,然后输出结果图像即可。

二:程序实现

类MyCluster,存储每个像素块中心的信息,计算中心位置。

类SuperPixelsFilter, 滤镜实现,完成六边形网格分割的主要功能,其中距离计算,基

于欧几里德距离公式。

三:效果

原图:

效果:


四:完全源代码

package com.gloomyfish.image.cluster.effect;
 
import java.awt.image.BufferedImage;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
 
import com.gloomyfish.filter.study.AbstractBufferedImageOp;
 
public class SuperPixelsFilter extends AbstractBufferedImageOp {
 
  private double[] distances;
  private int[] labels; 
  private MyCluster[] clusters;
  private int maxClusteringLoops = 50;
  
  private double blockSize;
  private double modifier;
  
  public SuperPixelsFilter()
  {
    blockSize = 16;
    modifier = 130;
  }
  
  public double getBlockSize() {
    return blockSize;
  }
 
  public void setBlockSize(double blockSize) {
    this.blockSize = blockSize;
  }
 
  public double getModifier() {
    return modifier;
  }
 
  public void setModifier(double modifier) {
    this.modifier = modifier;
  }
    
  @Override
  public BufferedImage filter(BufferedImage src, BufferedImage dest) {
    int width = src.getWidth();
        int height = src.getHeight();
 
        if ( dest == null )
            dest = createCompatibleDestImage( src, null );
 
        int[] inPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );
        int index = 0;
        // initialization
        distances = new double[width*height];
        labels = new int[width*height];
        Arrays.fill(distances, Integer.MAX_VALUE);
        Arrays.fill(labels, -1);
        initClusters(width, height, inPixels, blockSize, modifier);
        // loop to get all block/cells, image segmentation
        int loops = 0;
        boolean pixelChangedCluster = true;
        while (pixelChangedCluster&&loops<maxClusteringLoops) { 
            pixelChangedCluster = false;
            loops++;
            // for each cluster center C  
            for (int i=0;i<clusters.length;i++) { 
              MyCluster c = clusters[i];
                // for each pixel i in 2S region around 
                // cluster center 
                int xs = Math.max((int)(c.avg_x-blockSize),0);
                int ys = Math.max((int)(c.avg_y-blockSize),0);
                int xe = Math.min((int)(c.avg_x+blockSize),width);
                int ye = Math.min((int)(c.avg_y+blockSize),height);
                for (int y=ys;y<ye;y++) { 
                    for (int x=xs;x<xe;x++) { 
                        int pos = x+width*y;
                        int tr = (inPixels[pos] >> 16) & 0xff;
                        int tg = (inPixels[pos] >> 8) & 0xff;
                        int tb = inPixels[pos] & 0xff;
                        double D = c.distance(x, y, tr, 
                                                    tg, 
                                                    tb, 
                                                    blockSize, modifier, width, height);
                        if ((D<distances[pos])&&(labels[pos]!=c.id)) { 
                            distances[pos]         = D;
                            labels[pos]            = c.id;
                            pixelChangedCluster = true;
                        } 
                    } // end for x 
                } // end for y 
            } // end for clusters 
            // reset clusters 
            for (index=0;index<clusters.length;index++) { 
                clusters[index].reset();
            } 
            // add every pixel to cluster based on label 
            for (int y=0;y<height;y++) { 
                for (int x=0;x<width;x++) { 
                    int pos = x+y*width;
                    int tr = (inPixels[pos] >> 16) & 0xff;
                    int tg = (inPixels[pos] >> 8) & 0xff;
                    int tb = inPixels[pos] & 0xff;
                    clusters[labels[pos]].addPixel(x, y, 
                            tr, tg, tb);
                } 
            } 
            
            // calculate centers 
            for (index=0;index<clusters.length;index++) { 
                clusters[index].calculateCenter();
            } 
        } 
        
        // Create output image with pixel edges  
        for (int y=1;y<height-1;y++) { 
            for (int x=1;x<width-1;x++) { 
                int id1 = labels[x+y*width];
                int id2 = labels[(x+1)+y*width];
                int id3 = labels[x+(y+1)*width];
                if (id1!=id2||id1!=id3) { 
                  int pos = x+y*width;
                  inPixels[pos] = (255 << 24) | (0 << 16) | (0 << 8) | 0; 
                } 
            } 
        } 
 
        setRGB( dest, 0, 0, width, height, inPixels );
        return dest;
  }
  
  public void initClusters(int width, int height, int[] input, 
            double S, double m) { 
    List<MyCluster> temp = new ArrayList<MyCluster>();
    boolean even = false;
    double xstart = 0;
    int id = 0;
    for (double y = S / 2; y < height; y += S) {
      // 创建六边形网格
      if (even) {
        xstart = S / 2.0;
        even = false;
      } else {
        xstart = S;
        even = true;
      }
      for (double x = xstart; x < width; x += S) {
        int index = (int) (x + y * width);
                int tr = (input[index] >> 16) & 0xff;
                int tg = (input[index] >> 8) & 0xff;
                int tb = input[index] & 0xff;
        MyCluster c = new MyCluster(id, tr, tg, tb,
            (int) x, (int) y, S, m);
        temp.add(c);
        id++;
      }
    }
    clusters = new MyCluster[temp.size()];
    for (int i = 0; i < temp.size(); i++) {
      clusters[i] = temp.get(i);
    } 
} 
 
}

MyCluster类代码:

package com.gloomyfish.image.cluster.effect;
 
public class MyCluster {
 
  int id;
  double inv = 0; // inv variable for optimization
  double pixelCount; // pixels in this cluster
  double avg_red; // average red value
  double avg_green; // average green value
  double avg_blue; // average blue value
  double sum_red; // sum red values
  double sum_green; // sum green values
  double sum_blue; // sum blue values
  double sum_x; // sum x
  double sum_y; // sum y
  double avg_x; // average x
  double avg_y; // average y
 
  public MyCluster(int id, int in_red, int in_green, int in_blue, int x,
      int y, double S, double m) {
    // inverse for distance calculation
    this.inv = 1.0 / ((S / m) * (S / m));
    this.id = id;
    addPixel(x, y, in_red, in_green, in_blue);
    // calculate center with initial one pixel
    calculateCenter();
  }
 
  public void reset() {
    avg_red = 0;
    avg_green = 0;
    avg_blue = 0;
    sum_red = 0;
    sum_green = 0;
    sum_blue = 0;
    pixelCount = 0;
    avg_x = 0;
    avg_y = 0;
    sum_x = 0;
    sum_y = 0;
  }
 
  /*
   * Add pixel color values to sum of previously added color values.
   */
  void addPixel(int x, int y, int in_red, int in_green, int in_blue) {
    sum_x += x;
    sum_y += y;
    sum_red += in_red;
    sum_green += in_green;
    sum_blue += in_blue;
    pixelCount++;
  }
 
  public void calculateCenter() {
    // Optimization: using "inverse"
    // to change divide to multiply
    double inv = 1 / pixelCount;
    avg_red = sum_red * inv;
    avg_green = sum_green * inv;
    avg_blue = sum_blue * inv;
    avg_x = sum_x * inv;
    avg_y = sum_y * inv;
  }
 
  double distance(int x, int y, int red, int green, int blue, double S,
      double m, int w, int h) {
    // power of color difference between
    // given pixel and cluster center
    double dx_color = (avg_red - red) * (avg_red - red)
        + (avg_green - green) * (avg_green - green) + (avg_blue - blue)
        * (avg_blue - blue);
    // power of spatial difference between
    // given pixel and cluster center
    double dx_spatial = (avg_x - x) * (avg_x - x) + (avg_y - y)
        * (avg_y - y);
    // Calculate approximate distance D
    // double D = dx_color+dx_spatial*inv;
    // Calculate squares to get more accurate results
    double D = Math.sqrt(dx_color) + Math.sqrt(dx_spatial * inv);
    return D;
  }
}1.

五:参考这里

该滤镜是SuperPixel算法的简单应用,多数时候,我们可能更熟悉


K-Means等图像分割算法,其实SuperPixel是图像分割算法之一。


告示一下:


博客从这个月恢复更新,请大家继续关注,之前消失了一年,完


成了本人的第一本关于图像处理的书初稿写作,谢谢大家厚爱

相关文章
|
1月前
基于形状模板匹配(一)相关算子简介
基于形状模板匹配(一)相关算子简介
|
1月前
halcon算子模板匹配(一)基于形状的模板匹配
halcon算子模板匹配(一)基于形状的模板匹配
367 0
|
22天前
|
算法 BI 计算机视觉
图像处理之积分图应用一(半径无关的快速模糊算法)
图像处理之积分图应用一(半径无关的快速模糊算法)
14 0
|
1月前
[Halcon&图像] 图像、区域和轮廓相互转化
[Halcon&图像] 图像、区域和轮廓相互转化
139 1
|
1月前
|
文字识别 Python
Halcon 学习笔记五:几何定位+仿射变换+测量
Halcon 学习笔记五:几何定位+仿射变换+测量
233 0
|
1月前
[3D&Halcon] 3D重要算子及简单处理点云模型求高度示例讲解
[3D&Halcon] 3D重要算子及简单处理点云模型求高度示例讲解
349 0
|
6月前
|
算法
3D Hough变换点云平面检测算法
3D Hough变换点云平面检测算法
108 0
|
机器学习/深度学习 算法 数据挖掘
传统图像处理之颜色特征
传统图像处理之颜色特征
193 0
传统图像处理之颜色特征
|
算法 图形学
【计算机图形学】实验四:线段裁剪
【计算机图形学】实验四:线段裁剪
89 0
【计算机图形学】实验四:线段裁剪
|
传感器 人工智能 数据可视化
点云配准新方案!SuperLine3D:激光雷达点云中的自监督线分割和描述子提取(ECCV2022)
电线杆和建筑物的轮廓是城市道路上随处可见的物体,可为计算机视觉提供可靠的提示。为了重复提取它们作为特征并在离散的LiDAR帧之间实现关联以进行点云匹配。本文提出了一个用于LiDAR点云中3D线的基于学习的特征分割和描述子模型。
点云配准新方案!SuperLine3D:激光雷达点云中的自监督线分割和描述子提取(ECCV2022)