国内大模型调用实战

简介: 前面我们一览了国内主要大模型厂商的API价格,今天我们就来具体看下具体API的使用【6月更文挑战第3天】

国内大模型API调用实战

今天我们就来具体看下具体大模型厂商API的使用。

1.API

  • deepseek
    deepseek支持requests直接调用和openai式的调用,新注册用户有500万token

      import requests
      import json
    
      url = "https://api.deepseek.com/chat/completions"
    
      payload = json.dumps({
         
      "messages": [
          {
         
          "content": "You are a helpful assistant",
          "role": "system"
          },
          {
         
          "content": "Hi",
          "role": "user"
          }
      ],
      "model": "deepseek-coder",
      "frequency_penalty": 0,
      "max_tokens": 2048,
      "presence_penalty": 0,
      "stop": None,
      "stream": False,
      "temperature": 1,
      "top_p": 1,
      "logprobs": False,
      "top_logprobs": None
      })
      headers = {
         
      'Content-Type': 'application/json',
      'Accept': 'application/json',
      'Authorization': 'Bearer <key>'
      }
      response = requests.request("POST", url, headers=headers, data=payload)
    
      print(response.text)
    
      from openai import OpenAI
      # for backward compatibility, you can still use `https://api.deepseek.com/v1` as `base_url`.
      client = OpenAI(api_key="sk-4f510fa4ca9d4ea7b56cdca99418fd9d", base_url="https://api.deepseek.com")
    
      response = client.chat.completions.create(
          model="deepseek-chat",
          messages=[
              {
         "role": "system", "content": "You are a helpful assistant"},
              {
         "role": "user", "content": "Hello"},
      ],
          max_tokens=1024,
          temperature=0.7,
          stream=False
      )
    
      print(response.choices[0].message.content)
    
  • 智普AI
    需要安装zhipuai包,新注册用户有赠送token

    • pip install zhipuai
    • Python>=3.7

      from zhipuai import ZhipuAI
      client = ZhipuAI(api_key="dd") # 请填写您自己的APIKey
      response = client.chat.completions.create(
      model="glm-4",  # 填写需要调用的模型名称
          messages=[
              {
             "role": "user", "content": "你好!你叫什么名字"},
          ],
          stream=True,
          )
      for chunk in response:
          print(chunk.choices[0].delta)
      
  • kimi
    kimi也是支持openai样式的调用,新注册用户的15元的赠送

    • pip install --upgrade 'openai>=1.0'

      from openai import OpenAI
      
      client = OpenAI(
          api_key = "sk-KbwNWKBaRwhkvmfIHeaV4xnlpp3haV7qLr0sSU7wIOI9ZSNh",
          base_url = "https://api.moonshot.cn/v1",
      )
      
      completion = client.chat.completions.create(
          model = "moonshot-v1-8k",
          messages = [
              {
             "role": "system", "content": "你是 Kimi,由 Moonshot AI 提供的人工智能助手,你更擅长中文和英文的对话。你会为用户提供安全,有帮助,准确的回答。同时,你会拒绝一切涉及恐怖主义,种族歧视,黄色暴力等问题的回答。Moonshot AI 为专有名词,不可翻译成其他语言。"},
              {
             "role": "user", "content": "你好,我叫李雷,1+1等于多少?"}
          ],
          temperature = 0.3,
      )
      
      print(completion.choices[0].message.content)
      
  • 字节豆包
    豆包需要安装方舟包

    • pip install 'volcengine-python-sdk[ark]'

      from volcenginesdkarkruntime import Ark
      
      # Authentication
      # 1.If you authorize your endpoint using an API key, you can set your api key to environment variable "ARK_API_KEY"
      # or specify api key by Ark(api_key="${YOUR_API_KEY}").
      # Note: If you use an API key, this API key will not be refreshed.
      # To prevent the API from expiring and failing after some time, choose an API key with no expiration date.
      
      # 2.If you authorize your endpoint with Volcengine Identity and Access Management(IAM), set your api key to environment variable "VOLC_ACCESSKEY", "VOLC_SECRETKEY"
      # or specify ak&sk by Ark(ak="${YOUR_AK}", sk="${YOUR_SK}").
      # To get your ak&sk, please refer to this document([https://www.volcengine.com/docs/6291/65568](https://www.volcengine.com/docs/6291/65568))
      # For more information,please check this document([https://www.volcengine.com/docs/82379/1263279](https://www.volcengine.com/docs/82379/1263279))
      client = Ark()
      
      # Non-streaming:
      print("----- standard request -----")
      completion = client.chat.completions.create(
        model="${YOUR_ENDPOINT_ID}",
        messages = [
            {
             "role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"},
            {
             "role": "user", "content": "常见的十字花科植物有哪些?"},
        ],
      )
      print(completion.choices[0].message.content)
      
      # Streaming:
      print("----- streaming request -----")
      stream = client.chat.completions.create(
        model="${YOUR_ENDPOINT_ID}",
        messages = [
            {
             "role": "system", "content": "你是豆包,是由字节跳动开发的 AI 人工智能助手"},
            {
             "role": "user", "content": "常见的十字花科植物有哪些?"},
        ],
        stream=True
      )
      for chunk in stream:
        if not chunk.choices:
            continue
        print(chunk.choices[0].delta.content, end="")
      print()
      
  • 讯飞星火
    讯飞星火新注册用户都有免费额度,不同模型额度不要,3.5有10万token, 2.0的有200万一年token. 接口是采用websocket

    • pip install --upgrade spark_ai_python
    • python 3.8

      from sparkai.llm.llm import ChatSparkLLM, ChunkPrintHandler
      from sparkai.core.messages import ChatMessage
      
      #星火认知大模型Spark3.5 Max的URL值,其他版本大模型URL值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
      SPARKAI_URL = 'wss://spark-api.xf-yun.com/v3.5/chat'
      #星火认知大模型调用秘钥信息,请前往讯飞开放平台控制台(https://console.xfyun.cn/services/bm35)查看
      SPARKAI_APP_ID = ''
      SPARKAI_API_SECRET = ''
      SPARKAI_API_KEY = ''
      #星火认知大模型Spark3.5 Max的domain值,其他版本大模型domain值请前往文档(https://www.xfyun.cn/doc/spark/Web.html)查看
      SPARKAI_DOMAIN = 'generalv3.5'
      
      if __name__ == '__main__':
        spark = ChatSparkLLM(
            spark_api_url=SPARKAI_URL,
            spark_app_id=SPARKAI_APP_ID,
            spark_api_key=SPARKAI_API_KEY,
            spark_api_secret=SPARKAI_API_SECRET,
            spark_llm_domain=SPARKAI_DOMAIN,
            streaming=False,
        )
        messages = [ChatMessage(
            role="user",
            content='你好呀'
        )]
        handler = ChunkPrintHandler()
        a = spark.generate([messages], callbacks=[handler])
        print(a)
      

2. API使用总结

可以知道上面的API使用大同小异,有些直接兼容openai的调用格式:

  • 需要注册获取api key,进行授权
  • api接口基本都支持stream流式输出
  • api接口都是典型chat模式,提供不同的角色信息,system,user和assistant, 多轮对话在history中拼接会话信息

大家快去使用吧。

目录
相关文章
|
8月前
|
机器学习/深度学习 编解码 Shell
|
人工智能 JavaScript 前端开发
从零开始,国内实现调用Open Ai
从零开始,国内实现调用Open Ai
874 0
|
3月前
|
数据采集 API 决策智能
华为诺亚联合中科大发布工具调用模型ToolACE,效果持平GPT-4获开源第一
 【10月更文挑战第10天】华为诺亚方舟实验室与中国科学技术大学合作推出ToolACE,一种自进化合成过程的工具调用模型。ToolACE通过多智能体交互和双重验证系统生成准确、复杂、多样化的工具学习数据,显著提升大型语言模型(LLM)的功能调用能力。实验结果显示,使用ToolACE数据训练的80亿参数模型性能媲美GPT-4,在伯克利功能调用排行榜上获得开源第一。
117 4
|
2天前
|
搜索推荐 测试技术 API
探秘电商API:从测试到应用的深度解析与实战指南
电商API是电子商务背后的隐形引擎,支撑着从商品搜索、购物车更新到支付处理等各个环节的顺畅运行。它通过定义良好的接口,实现不同系统间的数据交互与功能集成,确保订单、库存和物流等信息的实时同步。RESTful、GraphQL和WebSocket等类型的API各自适用于不同的应用场景,满足多样化的需求。在测试方面,使用Postman、SoapUI和jMeter等工具进行全面的功能、性能和安全测试,确保API的稳定性和可靠性。未来,随着人工智能、大数据和物联网技术的发展,电商API将进一步智能化和标准化,为用户提供更个性化的购物体验,并推动电商行业的持续创新与进步。
13 4
|
13天前
|
数据可视化 数据挖掘
阿里云百炼/析言GBI在产品博士中是怎么发挥作用的?请看此视频了解
阿里云百炼/析言GBI在产品博士中通过数据分析和可视化展示,帮助用户了解产品的GAAP收入情况。视频展示了2024年4月至7月期间,浙江地区的公共云产品每月GAAP收入,按月增序排列,并提供了详细的行业收入对比和日收入数据。图片展示了具体的数据图表,便于用户直观理解。
|
1月前
|
人工智能 API 语音技术
开发者福利,魔搭推出免费模型推理API,注册就送每日2000次调用!
今天,魔搭社区开放了免费的开源模型推理API,仅需使用魔搭的SDK Token,就可以通过简单的API请求探索各种强大的开源模型的使用。
|
1月前
|
人工智能 测试技术 API
哪个模型擅长调用工具?这个7B模型跻身工具调用综合榜单第一
《Hammer: Robust Function-Calling for On-Device Language Models via Function Masking》提出了一种新型基础模型Hammer,通过函数掩码技术显著提升了大型语言模型在工具调用方面的性能,减少了对特定命名约定的依赖,展现了强大的泛化能力和超越现有模型的表现。该研究已开源,旨在促进智能设备的本地AI功能发展。
87 6
|
2月前
|
监控 搜索推荐 安全
探究亚马逊详情API接口:开发与应用
在数字化时代,亚马逊作为全球领先的电商平台,为商家和消费者提供了丰富的商品信息和便捷的购物体验。本文深入探讨了亚马逊详情API接口的获取与运用,帮助开发者和商家实时监控商品数据、分析市场趋势、优化价格策略、分析竞争对手、构建推荐系统及自动化营销工具,从而在竞争中占据优势。文章还提供了Python调用示例和注意事项,确保API使用的安全与高效。
147 3
|
1月前
|
人工智能 Kubernetes Cloud Native
荣获2024年AI Cloud Native典型案例,阿里云容器产品技术能力获认可
2024全球数字经济大会云·AI·计算创新发展大会,阿里云容器服务团队携手客户,荣获“2024年AI Cloud Native典型案例”。
|
6月前
|
人工智能 自然语言处理 算法