数学原理:
首先看两张图片,大小均为256 * 256个像素, 第一张是纯蓝色
图一:
第二张是加有随机噪声的蓝色
图二:
产生随机噪声的算法简单的不能再简单了
假设RGB的R与G颜色分量均为零, 则 Blue = 255 * Math.Random() 随机数的取值范围在
[0, 1]之间, 程序的核心代码如下:
for(int row=0; row<256; row++) {
for(int col=0; col<256; col++) {
b = (int)(255.0d * Math.random());
rgbData[index]= ((clamp(a) & 0xff) << 24) |
((clamp(r)& 0xff) << 16) |
((clamp(g)& 0xff) << 8) |
((clamp(b)& 0xff));
index++;
}
}
上面显然不是我想要的结果,我想要的是下面两种:
图三:
图四:
对的,只要我们对上面的算法稍加改进,就可以实现这样漂亮的噪声效果
实现第二张图效果的算法缺点在于,它每次都产生一个新的随机数,假设[0,1] = 255,接着第
二点随机可以能为[0, 2] = 0 第三个点可能随机值为[0, 3] = 125, 毫无规律可言,而我希望是
假设第一点随机[0, 1] = 255则间隔N个点以后再产生下个随机颜色值[0,N+1] =125, 在下一
个点则为[0, 2N +1] = 209…..于是问题产生了, 我们怎么计算[1, N]的之间的每个像素点的值
哇,这个问题不正是关于图像放缩的插值问题嘛,一个最简单的选择是双线性插值算法,
算法解释参考这里:http://blog.csdn.net/jia20003/article/details/6915185
有了算法选择,下面的问题就是我们怎么计算点值的问题,面临两个选择,一个值照搬双线
性插值中的计算方法,但是有点不自然,我们想要的是噪声,显然线性的计算结果不是最好
的最好的选择,cos(x)如何,在[0, PI]内是递减,在[PI,2PI]内是递增,而且值的范围在[-1, 1]
之间,而我们的随机数值要在[0, 1]之间于是综合上述考虑我们有cos(PI + (x-x0/x1-x0)* PI) + 1, 现
在计算出来的值是[0, 1]区间之内 根据插值公式最终有:
y= (y1-y0) * cos(PI + (x-x0/x1-x0) * PI) + 1 + y0
其中[x, y]代表要计算的点,周围四个采样点为:[x-N, y-N], [x+N,y-N], [x-N, y+N], [x+N, y+N ]
运用双线性插值原理即可计算出[1, N]个每个像素点的值。
关键代码实现及解释:
获取四个采样点,及其值,然后使用类似双线性算法计算出[x,y]的随机数值进而计算出像素值
的程序代码如下:
// bi-line interpolation algorithm here!!! Double GetColor(int x, int y, int M, int colorType) { int x0 = x - (x % M); int x1 = x0 + M; int y0 = y - (y % M); int y1 = y0 + M; Double x0y0 = Noise(x0,y0, colorType); Double x1y0 = Noise(x1,y0, colorType); Double x0y1 = Noise(x0,y1, colorType); Double x1y1 = Noise(x1,y1, colorType); Double xx0 =Interpolate(x0, x0y0, x1, x1y0, x); Double xx1 = Interpolate(x0,x0y1, x1, x1y1, x); Double N =Interpolate(y0, xx0, y1, xx1, y); return N; }
根据两个点计算插入值的公式代码如下:
return (1.0 + Math.cos(Math.PI + (Math.PI / (x1-x0)) * (x-x0))) / 2.0 * (xx1-xx0) + xx0;
对一张图像实现随机噪声值得出像素值计算的代码如下:
for(int row=0; row<256; row++) { for(int col=0; col<256; col++) { // set random color value for each pixel r = (int)(255.0d * GetColor(row, col, intervalPixels, 1)); g = (int)(255.0d * GetColor(row, col, intervalPixels, 2)); b = (int)(255.0d * GetColor(row, col, intervalPixels, 4)); rgbData[index] = ((clamp(a) & 0xff) << 24) | ((clamp(r) & 0xff) << 16) | ((clamp(g) & 0xff) << 8) | ((clamp(b) & 0xff)); index++; } }
完全源代码如下:
import java.awt.BorderLayout; import java.awt.Dimension; import java.awt.Graphics; import java.awt.Graphics2D; import java.awt.RenderingHints; import java.awt.image.BufferedImage; import java.util.Random; import javax.swing.JComponent; import javax.swing.JFrame; public class RandomNoiseImage extends JComponent { /** * */ private static final long serialVersionUID = -2236160343614397287L; private BufferedImage image = null; private double[] blue_random; private double[] red_random; private double[] green_random; private int intervalPixels = 40; // default public RandomNoiseImage() { super(); this.setOpaque(false); } protected void paintComponent(Graphics g) { Graphics2D g2 = (Graphics2D)g; g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON); g2.drawImage(getImage(), 5, 5, image.getWidth(), image.getHeight(), null); } private BufferedImage getImage() { if(image == null) { image = new BufferedImage(256, 256, BufferedImage.TYPE_INT_ARGB); int[] rgbData = new int[256*256]; generateNoiseImage(rgbData); setRGB(image, 0, 0, 256, 256, rgbData); } return image; } private void generateNoiseImage(int[] rgbData) { int index = 0; int a = 255; int r = 0; int g = 0; int b = 0; int sum = 256 * 256; blue_random = new double[sum]; red_random = new double[sum]; green_random = new double[sum]; Random random = new Random(); for(int i=0; i< sum; i++) { blue_random[i] = random.nextDouble(); red_random[i] = random.nextDouble(); green_random[i] = random.nextDouble(); } for(int row=0; row<256; row++) { for(int col=0; col<256; col++) { // set random color value for each pixel r = (int)(255.0d * GetColor(row, col, intervalPixels, 1)); g = (int)(255.0d * GetColor(row, col, intervalPixels, 2)); b = (int)(255.0d * GetColor(row, col, intervalPixels, 4)); rgbData[index] = ((clamp(a) & 0xff) << 24) | ((clamp(r) & 0xff) << 16) | ((clamp(g) & 0xff) << 8) | ((clamp(b) & 0xff)); index++; } } } private int clamp(int rgb) { if(rgb > 255) return 255; if(rgb < 0) return 0; return rgb; } // bi-line interpolation algorithm here!!! Double GetColor(int x, int y, int M, int colorType) { int x0 = x - (x % M); int x1 = x0 + M; int y0 = y - (y % M); int y1 = y0 + M; Double x0y0 = Noise(x0, y0, colorType); Double x1y0 = Noise(x1, y0, colorType); Double x0y1 = Noise(x0, y1, colorType); Double x1y1 = Noise(x1, y1, colorType); Double xx0 = Interpolate(x0, x0y0, x1, x1y0, x); Double xx1 = Interpolate(x0, x0y1, x1, x1y1, x); Double N = Interpolate(y0, xx0, y1, xx1, y); return N; } // algorithm selection here !!! private Double Interpolate(double x0, double xx0, double x1, double xx1, double x) { return (1.0 + Math.cos(Math.PI + (Math.PI / (x1-x0)) * (x-x0))) / 2.0 * (xx1-xx0) + xx0; } Double Noise(int x, int y, int colorType) { if(colorType == 1) { if (x < 256 && y < 256) return red_random[y * 256 + x]; else return 0.0; } else if(colorType == 2) { if (x < 256 && y < 256) return green_random[y * 256 + x]; else return 0.0; } else { if (x < 256 && y < 256) return blue_random[y * 256 + x]; else return 0.0; } } public void setRGB( BufferedImage image, int x, int y, int width, int height, int[] pixels ) { int type = image.getType(); if ( type == BufferedImage.TYPE_INT_ARGB || type == BufferedImage.TYPE_INT_RGB ) image.getRaster().setDataElements( x, y, width, height, pixels ); else image.setRGB( x, y, width, height, pixels, 0, width ); } public static void main(String[] args) { JFrame frame = new JFrame("Noise Art Panel"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.getContentPane().setLayout(new BorderLayout()); // Display the window. frame.getContentPane().add(new RandomNoiseImage(), BorderLayout.CENTER); frame.setPreferredSize(new Dimension(280,305)); frame.pack(); frame.setVisible(true); } }