数据结构与算法——拓扑排序(引例、拓扑排序、伪代码、代码、关键路径问题)

简介: 数据结构与算法——拓扑排序(引例、拓扑排序、伪代码、代码、关键路径问题)

引例

以一个例子开始引进拓扑排序 image.png

根据这个表,我们可以每个课程表示为图的顶点,<V,W>表示边,V为W的预修课程,画出图:

这样就构成了一个 AOV网络,即Activity On Vertex 网络

给每个学期排课,根据这个图排成的序列成为拓扑序:

拓扑排序

  • 如果图中从V到W有一条有向路径,则V一定排在W之前。满足此条件的顶点序列称为一个拓扑序
  • 获得一个拓扑序的过程就是拓扑排序
  • AOV如果有合理的拓扑序,则必定是有向无环图(Directed Acyclic Graph,DAG

算法伪代码

void TopSort()
{
    for(each vertex V in the graph)
    {
        if(Indegree[V] == 0)  //这里把所有入度为0的顶点入队
            Enqueue(V, Q);
    }
 
    while(!IsEmpty(Q))
    {
        V = Dequeue(Q);    //从队列中取出顶点,该顶点的入度一定为0
        输出(V); // 输出V,或者记录V的输出序号
        cnt++;   //记录输出的顶点的个数,用于判断图中是否有回路
 
        for(each adjacent vertex W of V)  //把V的所有邻接点的入度都减1
        {
            if(--Indegree[W] == 0)
                Enqueue(W, Q);
        }
    }
 
    if(cnt != number of vertices in the graph)  //判断输出顶点的个数(即入度为0的顶点个数)是否与图中的顶点数量相等,如果不相等,则说明图中有回路
        Error("The graph contains a cycle");
}

时间复杂度

稀疏图:

稠密图:

此算法可以用来检测有向图是否DAG。

代码(C语言)

/* 邻接表存储 - 拓扑排序算法 */
 
bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
 
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
        
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
            
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
            
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
    
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}

关键路径问题

关键路径问题是拓扑排序的一个应用,用到了另外一种网络。

AOE(Activity On Edge)网络,一般用于安排项目的工序。

关键路径:由绝对不允许延误的活动组成的路径。

以下就是一个比较典型的AOE网络图:

画出了这个图,我们就可以知道:

  1. 整个工程的工期为18(Earliest[ 8 ] = 18
  2. 哪个组有机动时间(D<i,j> = Latest[ j ] - Earliest[ i ] - C<i,j>)
目录
相关文章
|
6天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
18天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
19 3
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
30天前
|
存储 缓存 算法
如何通过优化算法和代码结构来提升易语言程序的执行效率?
如何通过优化算法和代码结构来提升易语言程序的执行效率?
|
1月前
|
搜索推荐
插入排序算法的讲解和代码
【10月更文挑战第12天】插入排序是一种基础的排序算法,理解和掌握它对于学习其他排序算法以及数据结构都具有重要意义。你可以通过实际操作和分析,进一步深入了解插入排序的特点和应用场景,以便在实际编程中更好地运用它。
|
1月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
23 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
1月前
|
存储 搜索推荐 算法
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
【用Java学习数据结构系列】七大排序要悄咪咪的学(直接插入,希尔,归并,选择,堆排,冒泡,快排)以及计数排序(非比较排序)
22 1
|
1月前
|
算法
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
蓝桥杯宝藏排序 | 数据结构 | 快速排序 归并排序
|
23天前
|
缓存 分布式计算 监控
优化算法和代码需要注意什么
【10月更文挑战第20天】优化算法和代码需要注意什么
17 0
|
15天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9