数据结构与算法——拓扑排序(引例、拓扑排序、伪代码、代码、关键路径问题)

简介: 数据结构与算法——拓扑排序(引例、拓扑排序、伪代码、代码、关键路径问题)

引例

以一个例子开始引进拓扑排序 image.png

根据这个表,我们可以每个课程表示为图的顶点,<V,W>表示边,V为W的预修课程,画出图:

这样就构成了一个 AOV网络,即Activity On Vertex 网络

给每个学期排课,根据这个图排成的序列成为拓扑序:

拓扑排序

  • 如果图中从V到W有一条有向路径,则V一定排在W之前。满足此条件的顶点序列称为一个拓扑序
  • 获得一个拓扑序的过程就是拓扑排序
  • AOV如果有合理的拓扑序,则必定是有向无环图(Directed Acyclic Graph,DAG

算法伪代码

void TopSort()
{
    for(each vertex V in the graph)
    {
        if(Indegree[V] == 0)  //这里把所有入度为0的顶点入队
            Enqueue(V, Q);
    }
 
    while(!IsEmpty(Q))
    {
        V = Dequeue(Q);    //从队列中取出顶点,该顶点的入度一定为0
        输出(V); // 输出V,或者记录V的输出序号
        cnt++;   //记录输出的顶点的个数,用于判断图中是否有回路
 
        for(each adjacent vertex W of V)  //把V的所有邻接点的入度都减1
        {
            if(--Indegree[W] == 0)
                Enqueue(W, Q);
        }
    }
 
    if(cnt != number of vertices in the graph)  //判断输出顶点的个数(即入度为0的顶点个数)是否与图中的顶点数量相等,如果不相等,则说明图中有回路
        Error("The graph contains a cycle");
}

时间复杂度

稀疏图:

稠密图:

此算法可以用来检测有向图是否DAG。

代码(C语言)

/* 邻接表存储 - 拓扑排序算法 */
 
bool TopSort( LGraph Graph, Vertex TopOrder[] )
{ /* 对Graph进行拓扑排序,  TopOrder[]顺序存储排序后的顶点下标 */
    int Indegree[MaxVertexNum], cnt;
    Vertex V;
    PtrToAdjVNode W;
       Queue Q = CreateQueue( Graph->Nv );
 
    /* 初始化Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        Indegree[V] = 0;
        
    /* 遍历图,得到Indegree[] */
    for (V=0; V<Graph->Nv; V++)
        for (W=Graph->G[V].FirstEdge; W; W=W->Next)
            Indegree[W->AdjV]++; /* 对有向边<V, W->AdjV>累计终点的入度 */
            
    /* 将所有入度为0的顶点入列 */
    for (V=0; V<Graph->Nv; V++)
        if ( Indegree[V]==0 )
            AddQ(Q, V);
            
    /* 下面进入拓扑排序 */ 
    cnt = 0; 
    while( !IsEmpty(Q) ){
        V = DeleteQ(Q); /* 弹出一个入度为0的顶点 */
        TopOrder[cnt++] = V; /* 将之存为结果序列的下一个元素 */
        /* 对V的每个邻接点W->AdjV */
        for ( W=Graph->G[V].FirstEdge; W; W=W->Next )
            if ( --Indegree[W->AdjV] == 0 )/* 若删除V使得W->AdjV入度为0 */
                AddQ(Q, W->AdjV); /* 则该顶点入列 */ 
    } /* while结束*/
    
    if ( cnt != Graph->Nv )
        return false; /* 说明图中有回路, 返回不成功标志 */ 
    else
        return true;
}

关键路径问题

关键路径问题是拓扑排序的一个应用,用到了另外一种网络。

AOE(Activity On Edge)网络,一般用于安排项目的工序。

关键路径:由绝对不允许延误的活动组成的路径。

以下就是一个比较典型的AOE网络图:

画出了这个图,我们就可以知道:

  1. 整个工程的工期为18(Earliest[ 8 ] = 18
  2. 哪个组有机动时间(D<i,j> = Latest[ j ] - Earliest[ i ] - C<i,j>)
目录
相关文章
|
1月前
|
算法 安全 网络安全
数据结构之网络攻击路径(深度优先搜索)
本文介绍了如何使用深度优先搜索(DFS)算法分析网络攻击路径。在网络安全领域,DFS用于检测网络中潜在的攻击路径,帮助安全人员及时发现并阻止威胁。文中详细描述了网络图的构建、节点间的连接关系以及DFS的实现过程。通过一个具体的例子,展示了如何检测从一个普通节点到关键节点的攻击路径,并讨论了DFS算法的优缺点。提供的C++代码实现了网络图的构建和攻击路径的检测功能。
65 24
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
52 1
|
2月前
|
存储 Java 开发者
Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效
【10月更文挑战第19天】在软件开发中,随着项目复杂度的增加,数据结构的组织和管理变得至关重要。Java中的Map接口提供了一种优雅的方式来管理数据结构,使代码更加清晰、高效。本文通过在线购物平台的案例,展示了Map在商品管理、用户管理和订单管理中的具体应用,帮助开发者告别混乱,提升代码质量。
32 1
|
2月前
|
算法 搜索推荐 Java
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
基数排序是一种稳定的排序算法,通过将数字按位数切割并分配到不同的桶中,以空间换时间的方式实现快速排序,但占用内存较大,不适合含有负数的数组。
38 0
数据结构与算法学习十三:基数排序,以空间换时间的稳定式排序,速度很快。
|
2月前
|
存储 算法 索引
HashMap底层数据结构及其增put删remove查get方法的代码实现原理
HashMap 是基于数组 + 链表 + 红黑树实现的高效键值对存储结构。默认初始容量为16,负载因子为0.75。当存储元素超过容量 * 负载因子时,会进行扩容。HashMap 使用哈希算法计算键的索引位置,通过链表或红黑树解决哈希冲突,确保高效存取。插入、获取和删除操作的时间复杂度接近 O(1)。
32 0
|
2月前
05(数据结构考研)树相关操作代码
05(数据结构考研)树相关操作代码
31 0
|
2月前
|
算法
04(数据结构考研)串相关操作代码
04(数据结构考研)串相关操作代码
20 0
|
2月前
03(数据结构考研)队列相关操作代码
03(数据结构考研)队列相关操作代码
43 0
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
下一篇
DataWorks