高等数学II-知识点(2)——定积分、积分上限函数、牛顿-莱布尼茨公式、定积分的换元、定积分的分部积分法

简介: 高等数学II-知识点(2)——定积分、积分上限函数、牛顿-莱布尼茨公式、定积分的换元、定积分的分部积分法

定积分

定义

几何意义 image.png image.png

积分上限函数

定义

基本定理

设f(x)在[a,b]上连续,则对[a,b]上任意一点x,积分上限函数的导数存在,则 image.png

牛顿-莱布尼茨公式

image.png

定积分的换元

一般地,定积分的换元法在引进新积分变元后,积分上、下限也要作相应的变换,即“换元必换限”

image.png

目录
相关文章
|
6月前
|
算法 前端开发
前端算法-最大三角形面积-鞋带公式&-海伦公式
前端算法-最大三角形面积-鞋带公式&-海伦公式
65 0
|
6月前
|
Shell
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
【高数定积分求解旋转体体积】 —— (上)高等数学|定积分|柱壳法|学习技巧
106 0
03 微积分 - 积分
03 微积分 - 积分
49 0
【数值分析】复化积分公式
 对于积分: 只要找到被积公式的原函数F(x),利用牛顿莱普利兹公式有: 但是,实际使用这种求积分的方法往往是有困难的,因为大量的被积函数的原函数是不能用初等函数表示的;另外,当f(x)是由测量或数值计算给出的一张数据表时,牛顿莱普利兹公式也无法直接运用,因此有必要研究积分的数值计算问题。
1444 0
[再寄小读者之数学篇](2014-10-27 无穷多个无穷小量相乘还是无穷小量么?)
无穷多个无穷小量相乘还是无穷小量么?   解答: 不一定. 比如 $$\bex \ba{ll} \mbox{第 1 个:}&1,\cfrac{1}{2},\cfrac{1}{3},\cfrac{1}{4},\cdots;\\ \mbox{第 2 个:}&1,2,\cfrac{1}{3},\cfr...
753 0
|
关系型数据库 RDS
[再寄小读者之数学篇](2014-06-18 积分、微分不等式)
设 $f$ 为 $[0,1]$ 上的连续正函数, 且 $\dps{f^2(t)\leq 1+2\int_0^t f(s)\rd s}$. 证明: $f(t)\leq 1+t$.   证明: 设 $\dps{F(t)=\int_0^t f(s)\rd s}$, 则 $F(0)=0$, 且 $...
604 0
[再寄小读者之数学篇](2014-06-19 满足三个积分等式的函数)
设 $f$ 为 $[0,1]$ 上的连续非负函数, 找出满足条件 $$\bex \int_0^1 f(x)\rd x=1,\quad \int_0^1 xf(x)\rd x=a,\quad \int_0^1 x^2f(x)\rd x=a^2 \eex$$ 的所有 $f$, 其中 $a$ 为给定实数.
485 0
[再寄小读者之数学篇](2014-06-18 微分、积分中值定理一起来)
设 $f$ 在 $[0,1]$ 上可微, 且满足条件 $\dps{f(1)=3\int_0^{1/3} e^{x-1}f(x)\rd x}$, 证明: 存在 $\xi\in (0,1)$, 使得 $f(\xi)+f'(\xi)=0$.
803 0