数据结构学习记录——树习题-Complete Binary Search Tree(题目描述、输入输出示例、数据结构的选择、核心算法、计算左子树的规模)

简介: 数据结构学习记录——树习题-Complete Binary Search Tree(题目描述、输入输出示例、数据结构的选择、核心算法、计算左子树的规模)

题目描述

现给定一系列不同的非负整数键,如果要求构造出一颗完全二叉树,则可以构造唯一的二叉搜索树。输出此二叉搜索树的层序遍历序列。

完全二叉树

有n个节点的二叉树,对树中节点按从上至下、从左到右顺序进行编号,编号为i(1<= i <= n)节点与满二叉树中编号为i节点在二叉树中位置相同。

二叉搜索树

一颗二叉树,可以为空;如果不为空,满足一下性质:

1.非空左子树的所有键值小于其根节点的键值。

2.非空右子树的所有键值大于其根节点的键值。

3.左、右子树都是二叉搜索树

输入示例

每个输入文件包含一个测试用例。

对于每种情况,第一行包含正整数N(≤ 1 0 0 0)。

然后下一行给出了 N个不同的非负整数键。一行中的所有数字都用空格分隔,不大于2000。

Sample Input:

10

1 2 3 4 5 6 7 8 9 0

输出示例

对于每个测试用例,在一行中打印相应的完全二叉搜索树的层序遍历序列。

一行中的所有数字必须用空格分隔,并且行的末尾不能有额外的空格。

Sample Output:

6 3 8 1 5 7 9 0 2 4

数据结构的选择

二叉树可以通过数组和链表来实现,我们现在要先确定一下用哪种数据结构来解决这道题目。


在之前的学习中,我们使用链表来实现二叉树的存储。因为在一些较为极端的情况下,二叉树可能向左或向右倾斜的程度比较大,这个时候使用数组来实现的话就会造成很大的空间浪费。这是从空间的一个角度来考虑的,而在遍历上,数组和链表两种实现方式都是差不多的。


现在看回这道题目,它需要进行的操作:

  • 填写数字(也属于某种遍历)
  • 层序遍历

在遍历的角度上来看,两种方式都差不多,所以不考虑了。

从空间的角度上来看,完全二叉树的情况下,数组是不会浪费空间的,故而还不能下定论。


最后看到遍历的方式,发现是层序遍历,这就意味着,如果使用数组实现,那么直接顺序输出就是其层序遍历的遍历序列;而链表的层序遍历需要借助队列来实现,显然更为复杂一点。


所以,我们选择数组来实现。


核心算法

void solve(int ALeft, int ARight, int TRoot)
{  
   /*  初始调用为 solve(0, N - 1, 0) */
  n = ARight - ALeft + 1;
  if (n == 0)  
    return;
  L = GetLeftLength(n);  /*  计算出n个结点的树其左子树有多少个结点  */
  T[TRoot] = A[ALeft + L];
  LeftTRoot = TRoot * 2 + 1;
  RightTRoot = LeftTRoot + 1;
  solve(ALeft, ALeft + L - 1, LeftTRoot);
  solve(ALeft + L + 1, ARight, RightTRoot);
}

其中A为排序后的序列,我们需要对输入的序列进行排序,才能得到它, ALeft表示序列最左边的位置的下标,ARight则表示序列最右边的位置的下标。


T是我们求的结果树,TRoot就是结果树的根结点。


除了排序之外,还有一步重要的操作:计算左子树的结点个数,只有确定了左子树的结点个数,我们才能确定根结点以及右子树。


计算左子树的规模

思路

如图所示,完全二叉树的完美二叉树的部分可以用 来表示其结点数,H为其中完美二叉树部分的层数。

接下来把剩余的几个结点个数设为X,总结点数设为N,就可以得到一个关系式:

将公式整理成log形式,得:

对于大规模的计算,X对整体的结果影响很小很小,我们把X忽略,故而有:

N是已知的,所以可以根据这个公式求出H;

继而代入 求出X;

现在得到一整棵完全二叉树的结点数了,要怎么求其左子树的结点呢?

一棵完全二叉树的左子树也一定是一棵完全二叉树,所以可以知道其左子树的结点数应为:

你以为,这样就完了吗?

看一下另外一种情况,我们就会发现目前的X还不是最正确的X:

很显然,这里的X已经不在左子树的范畴内了。

正确应该为:

所以我们应该要对X的取值有一定的限制,或者说,X应该要有一定的范围。

可以考虑,当左子树为一棵完美二叉树时,X可以为0,也可以为

X为0的情况:

X为 的情况:

总结

最后,总结一下计算左子树的规模:

第一步是通过公式 求出H;

第二步是通过公式 求出X;

第三步是选出正确的X,

最后一步就是代入 求出我们最终的结果。


end



目录
相关文章
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
84 4
|
24天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
97 23
|
23天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
存储 算法 安全
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
数据结构与算法系列学习之串的定义和基本操作、串的储存结构、基本操作的实现、朴素模式匹配算法、KMP算法等代码举例及图解说明;【含常见的报错问题及其对应的解决方法】你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
2024重生之回溯数据结构与算法系列学习之串(12)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丟脸好嘛?】
|
1月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】基于多轮课程学习的大语言模型蒸馏算法 TAPIR
阿里云人工智能平台 PAI 与复旦大学王鹏教授团队合作,在自然语言处理顶级会议 EMNLP 2024 上发表论文《Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning》。
|
1月前
|
算法 安全 NoSQL
2024重生之回溯数据结构与算法系列学习之栈和队列精题汇总(10)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第3章之IKUN和I原达人之数据结构与算法系列学习栈与队列精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
42 0
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
191 9