数据结构学习记录——树习题-Complete Binary Search Tree(题目描述、输入输出示例、数据结构的选择、核心算法、计算左子树的规模)

简介: 数据结构学习记录——树习题-Complete Binary Search Tree(题目描述、输入输出示例、数据结构的选择、核心算法、计算左子树的规模)

题目描述

现给定一系列不同的非负整数键,如果要求构造出一颗完全二叉树,则可以构造唯一的二叉搜索树。输出此二叉搜索树的层序遍历序列。

完全二叉树

有n个节点的二叉树,对树中节点按从上至下、从左到右顺序进行编号,编号为i(1<= i <= n)节点与满二叉树中编号为i节点在二叉树中位置相同。

二叉搜索树

一颗二叉树,可以为空;如果不为空,满足一下性质:

1.非空左子树的所有键值小于其根节点的键值。

2.非空右子树的所有键值大于其根节点的键值。

3.左、右子树都是二叉搜索树

输入示例

每个输入文件包含一个测试用例。

对于每种情况,第一行包含正整数N(≤ 1 0 0 0)。

然后下一行给出了 N个不同的非负整数键。一行中的所有数字都用空格分隔,不大于2000。

Sample Input:

10

1 2 3 4 5 6 7 8 9 0

输出示例

对于每个测试用例,在一行中打印相应的完全二叉搜索树的层序遍历序列。

一行中的所有数字必须用空格分隔,并且行的末尾不能有额外的空格。

Sample Output:

6 3 8 1 5 7 9 0 2 4

数据结构的选择

二叉树可以通过数组和链表来实现,我们现在要先确定一下用哪种数据结构来解决这道题目。


在之前的学习中,我们使用链表来实现二叉树的存储。因为在一些较为极端的情况下,二叉树可能向左或向右倾斜的程度比较大,这个时候使用数组来实现的话就会造成很大的空间浪费。这是从空间的一个角度来考虑的,而在遍历上,数组和链表两种实现方式都是差不多的。


现在看回这道题目,它需要进行的操作:

  • 填写数字(也属于某种遍历)
  • 层序遍历

在遍历的角度上来看,两种方式都差不多,所以不考虑了。

从空间的角度上来看,完全二叉树的情况下,数组是不会浪费空间的,故而还不能下定论。


最后看到遍历的方式,发现是层序遍历,这就意味着,如果使用数组实现,那么直接顺序输出就是其层序遍历的遍历序列;而链表的层序遍历需要借助队列来实现,显然更为复杂一点。


所以,我们选择数组来实现。


核心算法

void solve(int ALeft, int ARight, int TRoot)
{  
   /*  初始调用为 solve(0, N - 1, 0) */
  n = ARight - ALeft + 1;
  if (n == 0)  
    return;
  L = GetLeftLength(n);  /*  计算出n个结点的树其左子树有多少个结点  */
  T[TRoot] = A[ALeft + L];
  LeftTRoot = TRoot * 2 + 1;
  RightTRoot = LeftTRoot + 1;
  solve(ALeft, ALeft + L - 1, LeftTRoot);
  solve(ALeft + L + 1, ARight, RightTRoot);
}

其中A为排序后的序列,我们需要对输入的序列进行排序,才能得到它, ALeft表示序列最左边的位置的下标,ARight则表示序列最右边的位置的下标。


T是我们求的结果树,TRoot就是结果树的根结点。


除了排序之外,还有一步重要的操作:计算左子树的结点个数,只有确定了左子树的结点个数,我们才能确定根结点以及右子树。


计算左子树的规模

思路

如图所示,完全二叉树的完美二叉树的部分可以用 来表示其结点数,H为其中完美二叉树部分的层数。

接下来把剩余的几个结点个数设为X,总结点数设为N,就可以得到一个关系式:

将公式整理成log形式,得:

对于大规模的计算,X对整体的结果影响很小很小,我们把X忽略,故而有:

N是已知的,所以可以根据这个公式求出H;

继而代入 求出X;

现在得到一整棵完全二叉树的结点数了,要怎么求其左子树的结点呢?

一棵完全二叉树的左子树也一定是一棵完全二叉树,所以可以知道其左子树的结点数应为:

你以为,这样就完了吗?

看一下另外一种情况,我们就会发现目前的X还不是最正确的X:

很显然,这里的X已经不在左子树的范畴内了。

正确应该为:

所以我们应该要对X的取值有一定的限制,或者说,X应该要有一定的范围。

可以考虑,当左子树为一棵完美二叉树时,X可以为0,也可以为

X为0的情况:

X为 的情况:

总结

最后,总结一下计算左子树的规模:

第一步是通过公式 求出H;

第二步是通过公式 求出X;

第三步是选出正确的X,

最后一步就是代入 求出我们最终的结果。


end



目录
相关文章
|
5月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
4月前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
269 4
|
9月前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
7月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
181 2
|
9月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
9月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
224 17
|
9月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
202 7
|
11月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
375 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
8月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
244 0
|
11月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
347 3
 算法系列之数据结构-Huffman树

热门文章

最新文章