LeetCode146:LRU缓存

简介: LeetCode146:LRU缓存

leetCode:146. LRU 缓存

题目描述

请你设计并实现一个满足 LRU (最近最少使用) 缓存 约束的数据结构。
实现 LRUCache 类:
LRUCache(int capacity) 以 正整数 作为容量 capacity 初始化 LRU 缓存
int get(int key) 如果关键字 key 存在于缓存中,则返回关键字的值,否则返回 -1 。
void put(int key, int value) 如果关键字 key 已经存在,则变更其数据值 value ;如果不存在,则向缓存中插入该组 key-value 。如果插入操作导致关键字数量超过 capacity ,则应该 逐出 最久未使用的关键字。
函数 get 和 put 必须以 O(1) 的平均时间复杂度运行。

示例:

输入
["LRUCache", "put", "put", "get", "put", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]

解释
LRUCache lRUCache = new LRUCache(2);
lRUCache.put(1, 1); // 缓存是 {1=1}
lRUCache.put(2, 2); // 缓存是 {1=1, 2=2}
lRUCache.get(1);    // 返回 1
lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2);    // 返回 -1 (未找到)
lRUCache.put(4, 4); // 该操作会使得关键字 1 作废,缓存是 {4=4, 3=3}
lRUCache.get(1);    // 返回 -1 (未找到)
lRUCache.get(3);    // 返回 3
lRUCache.get(4);    // 返回 4
提示:

1 <= capacity <= 3000
0 <= key <= 10000
0 <= value <= 105
最多调用 2 * 105 次 get 和 put

题目解读

LRU 缓存淘汰算法就是一种常用策略。LRU 的全称是 Least Recently Used,也就是说我们认为最近使用过的数据应该是是「有用的」,很久都没用过的数据应该是无用的,内存满了就优先删那些很久没用过的数据。

题目实现

只使用HashMap实现

算法设计

要让 put 和 get 方法的时间复杂度为 O(1),我们可以总结出 cache 这个数据结构必要的条件:

1、显然 cache 中的元素必须有时序,以区分最近使用的和久未使用的数据,当容量满了之后要删除最久未使用的那个元素腾位置。

2、我们要在 cache 中快速找某个 key 是否已存在并得到对应的 val;

3、每次访问 cache 中的某个 key,需要将这个元素变为最近使用的,也就是说 cache 要支持在任意位置快速插入和删除元素。

那么,什么数据结构同时符合上述条件呢?哈希表查找快,但是数据无固定顺序;链表有顺序之分,插入删除快,但是查找慢。所以结合一下,形成一种新的数据结构:哈希链表 LinkedHashMap。

LRU 缓存算法的核心数据结构就是哈希链表,双向链表和哈希表的结合体。这个数据结构长这样:

如果我们每次默认从链表尾部添加元素,那么显然越靠尾部的元素就是最近使用的,越靠头部的元素就是最久未使用的。

2、对于某一个 key,我们可以通过哈希表快速定位到链表中的节点,从而取得对应 val。

3、链表显然是支持在任意位置快速插入和删除的,改改指针就行。只不过传统的链表无法按照索引快速访问某一个位置的元素,而这里借助哈希表,可以通过 key 快速映射到任意一个链表节点,然后进行插入和删除。

代码实现

import java.util.*;
// LRUCache 类实现了一个基于 LRU 策略的缓存
public class LRUCache {
    // 缓存的最大容量
    private final int capacity;
    // 使用 HashMap 存储键值对,便于快速查找
    private final Map<Integer, Node> cacheMap;
    // 使用 LinkedList 作为双向链表,维护元素的访问顺序
    private final LinkedList<Node> lruList;
    // 构造函数,初始化缓存容量
    public LRUCache(int capacity) {
        this.capacity = capacity;
        this.cacheMap = new HashMap<>(capacity);
        this.lruList = new LinkedList<>();
    }
    // 根据键获取值,如果存在则更新访问顺序
    public int get(int key) {
        if (cacheMap.containsKey(key)) { // 如果键存在
            moveToHead(cacheMap.get(key)); // 移动节点到链表头部
            return cacheMap.get(key).val; // 返回值
        }
        return -1; // 键不存在,返回 -1
    }
    // 插入或更新键值对,如果超过容量则淘汰最不常用的项
    public void put(int key, int value) {
        if (cacheMap.containsKey(key)) { // 如果键已存在
            moveToHead(cacheMap.get(key)); // 移动节点到链表头部
            cacheMap.get(key).val = value; // 更新值
        } else { // 键不存在
            if (cacheMap.size() >= capacity) { // 如果缓存已满
                evict(); // 淘汰最不常用的项
            }
            Node newNode = new Node(key, value); // 创建新节点
            cacheMap.put(key, newNode); // 添加到缓存映射
            lruList.addFirst(newNode); // 添加到链表头部
        }
    }
    // 将指定节点移到链表头部
    private void moveToHead(Node node) {
        lruList.remove(node); // 从链表中移除节点
        lruList.addFirst(node); // 将节点添加到链表头部
    }
    // 淘汰最不常用的项
    private void evict() {
        Node nodeToRemove = lruList.pollLast(); // 获取链表尾部的节点
        cacheMap.remove(nodeToRemove.key); // 从缓存映射中移除节点
    }
    // 内部类 Node 表示链表中的一个节点,包含键、值以及指向前后节点的引用
    static class Node {
        int key;
        int val;
        Node next;
        Node prev;
        public Node(int key, int val) {
            this.key = key;
            this.val = val;
        }
    }
}

使用LinkedHashMap实现

算法设计

LinkedHashMap内部已经使用了LinkedList

代码实现

import java.util.LinkedHashMap;
//leetcode submit region begin(Prohibit modification and deletion)
class LRUCache {
    LinkedHashMap<Integer, Integer> cache = new LinkedHashMap<>();
    int capacity;
    public LRUCache(int capacity) {
        this.capacity = capacity;
    }
    public int get(int key) {
        //不包含
        if (!cache.containsKey(key)) {
            return -1;
        }
        // 将 key 变为最近使用
        makeRecently(key);
        return cache.get(key);
    }
    public void put(int key, int value) {
        if (cache.containsKey(key)) {
            makeRecently(key);
        } else {
            if (cache.size() >= capacity) {
                //删除头结点
                cache.remove(cache.keySet().iterator().next());
            }
        }
        cache.put(key, value);
    }
    /**
     * 将 key 移动到队尾
     *
     * @param key
     */
    private void makeRecently(int key) {
        int val = cache.get(key);
        // 删除 key,重新插入到队尾
        cache.remove(key);
        cache.put(key, val);
    }
}

继承LinkedHashMap实现(最简洁)

算法设计

LinkedHashMap.afterNodeInsertion()

void afterNodeInsertion(boolean evict) { // possibly remove eldest
  LinkedHashMap.Entry<K,V> first;
  if (evict && (first = head) != null && removeEldestEntry(first)) {
    K key = first.key;
    removeNode(hash(key), key, null, false, true);
  }
}

afterNodeInsertion() 可能会删除老元素,但需要满足3个条件:

evict 为 true;

(first = head) != null,双向链表的头结点不能为 null,换句话说,双向链表中必须有老元素(没有老元素还删个锤锤);

removeEldestEntry(first) 方法返回为 true。

其中removeEldestEntry方法是『移除最老的元素』,默认为false,即不删除

因此,我们需要复写removeEldestEntry方法即可

代码实现

class LRUCache extends LinkedHashMap<Integer, Integer> {
    int capacity=0;
    public LRUCache(int capacity) {
        super(capacity, 0.75F, true);
        this.capacity=capacity;
    }
    public int get(int key) {
        return (int) super.getOrDefault(key, -1);
    }
    public void put(int key, int value) {
        super.put(key, value);
    }
    /**
     * 判断元素个数是否超过缓存容量
     */
    protected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {
        return size() > capacity;
    }
}

其他

算法用途

手机管家-后台程序管理

相关

现在你应该理解 LRU(Least Recently Used)策略了。当然还有其他缓存淘汰策略,比如不要按访问的时序来淘汰,而是按访问频率(LFU 策略)来淘汰等等,各有应用场景

详见: LeetCode 160 LFU

相关文章
|
2月前
|
缓存 算法 数据挖掘
深入理解缓存更新策略:从LRU到LFU
【10月更文挑战第7天】 在本文中,我们将探讨计算机系统中缓存机制的核心——缓存更新策略。缓存是提高数据检索速度的关键技术之一,无论是在硬件还是软件层面都扮演着重要角色。我们会详细介绍最常用的两种缓存算法:最近最少使用(LRU)和最少使用频率(LFU),并讨论它们的优缺点及适用场景。通过对比分析,旨在帮助读者更好地理解如何选择和实现适合自己需求的缓存策略,从而优化系统性能。
66 3
|
2月前
|
缓存 分布式计算 NoSQL
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
大数据-47 Redis 缓存过期 淘汰删除策略 LRU LFU 基础概念
82 2
|
4月前
|
缓存 算法 前端开发
深入理解缓存淘汰策略:LRU和LFU算法的解析与应用
【8月更文挑战第25天】在计算机科学领域,高效管理资源对于提升系统性能至关重要。内存缓存作为一种加速数据读取的有效方法,其管理策略直接影响整体性能。本文重点介绍两种常用的缓存淘汰算法:LRU(最近最少使用)和LFU(最不经常使用)。LRU算法依据数据最近是否被访问来进行淘汰决策;而LFU算法则根据数据的访问频率做出判断。这两种算法各有特点,适用于不同的应用场景。通过深入分析这两种算法的原理、实现方式及适用场景,本文旨在帮助开发者更好地理解缓存管理机制,从而在实际应用中作出更合理的选择,有效提升系统性能和用户体验。
222 1
|
5月前
|
缓存 Python
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
在Python中,`functools`模块提供了一个非常有用的装饰器`lru_cache()`,它实现了最近最少使用(Least Recently Used, LRU)缓存策略。
|
4月前
|
存储 缓存 Java
|
4月前
|
存储 缓存 算法
Python 从零开始实现一个简单的LRU缓存
Python 从零开始实现一个简单的LRU缓存
47 0
|
5月前
|
缓存 算法 前端开发
前端 JS 经典:LRU 缓存算法
前端 JS 经典:LRU 缓存算法
101 0
|
7月前
|
缓存 算法 Java
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
数据结构~缓存淘汰算法--LRU算法(Java的俩种实现方式,万字解析
|
3月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
4月前
|
搜索推荐 索引 Python
【Leetcode刷题Python】牛客. 数组中未出现的最小正整数
本文介绍了牛客网题目"数组中未出现的最小正整数"的解法,提供了一种满足O(n)时间复杂度和O(1)空间复杂度要求的原地排序算法,并给出了Python实现代码。
125 2