【YOLOv8改进】LSKNet(Large Selective Kernel Network ):空间选择注意力 (论文笔记+引入代码)

简介: YOLO目标检测专栏介绍了YOLO的有效改进和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的新模型LSKNet利用大型选择性核关注遥感场景的先验知识,动态调整感受野,提升目标检测效果。创新点包括LSKblock Attention、大型选择性核网络和适应性感受野调整。LSKNet在多个遥感检测基准上取得最优性能,且结构轻量。此外,文章提供了YOLOv8的LSKNet实现代码。更多详情可查阅相关专栏链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

近期在遥感目标检测的研究中,主要集中于提高定向边界框的表示能力,但却忽略了遥感场景中独有的先验知识。这类先验知识是有用的,因为在没有参考足够长范围上下文的情况下,微小的遥感目标可能会被错误地检测到,而不同类型的对象所需的长范围上下文可能会有所不同。在本文中,我们考虑到了这些先验,并提出了大型选择性核网络(LSKNet)。LSKNet能够动态调整其大的空间接收场,以更好地模拟遥感场景中各种对象的范围上下文。据我们所知,这是首次在遥感目标检测领域探索大型和选择性核机制。无需任何额外复杂设计,我们的轻量级LSKNet在标准的遥感分类、目标检测和语义分割基准测试中设立了新的最先进水平。

创新点

  1. LSKblock Attention:LSKNet引入了LSKblock Attention作为一种注意力机制,通过空间选择性机制动态调整感受野,以更有效地处理不同目标类型的广泛上下文。这种机制允许模型根据输入自适应地确定大型核的权重,从而在空间维度上调整每个目标的感受野。
  2. 大型选择性核网络:LSKNet是首个在遥感目标检测领域探索大型和选择性核机制的模型。它通过加权处理大型深度核的特征,并在空间上将它们合并,以适应不同目标类型的不同上下文细微差异。
  3. 适应性感受野调整:LSKNet能够动态调整感受野以更好地模拟远程感知场景中各种对象的范围上下文,从而更有效地处理不同目标类型的广泛上下文。
  4. 性能优越:LSKNet在标准基准数据集上取得了新的最先进成绩,如HRSC2016、DOTA-v1.0和FAIR1M-v1.0,证明了其在遥感目标检测任务中的卓越性能和有效性。

创新点

  • 极化滤波(Polarized filteringPolarized):在通道和空间维度保持比较高的分辨率(在通道上保持C/2的维度,在空间上保持[H,W]的维度 ),进一步减少低分辨率、低通道数和上采样造成的信息损失。

  • 增强(Enhancement):采用细粒度回归输出分布的非线性函数。

yolov8 引入


 @ROTATED_BACKBONES.register_module()
class LSKNet(BaseModule):
    def __init__(self, img_size=224, in_chans=3, embed_dims=[64, 128, 256, 512],
                mlp_ratios=[8, 8, 4, 4], drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6),
                 depths=[3, 4, 6, 3], num_stages=4, 
                 pretrained=None,
                 init_cfg=None,
                 norm_cfg=None):
        super().__init__(init_cfg=init_cfg)

        assert not (init_cfg and pretrained), \
            'init_cfg and pretrained cannot be set at the same time'
        if isinstance(pretrained, str):
            warnings.warn('DeprecationWarning: pretrained is deprecated, '
                          'please use "init_cfg" instead')
            self.init_cfg = dict(type='Pretrained', checkpoint=pretrained)
        elif pretrained is not None:
            raise TypeError('pretrained must be a str or None')
        self.depths = depths
        self.num_stages = num_stages

        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0

        for i in range(num_stages):
            patch_embed = OverlapPatchEmbed(img_size=img_size if i == 0 else img_size // (2 ** (i + 1)),
                                            patch_size=7 if i == 0 else 3,
                                            stride=4 if i == 0 else 2,
                                            in_chans=in_chans if i == 0 else embed_dims[i - 1],
                                            embed_dim=embed_dims[i], norm_cfg=norm_cfg)

            block = nn.ModuleList([Block(
                dim=embed_dims[i], mlp_ratio=mlp_ratios[i], drop=drop_rate, drop_path=dpr[cur + j],norm_cfg=norm_cfg)
                for j in range(depths[i])])
            norm = norm_layer(embed_dims[i])
            cur += depths[i]

            setattr(self, f"patch_embed{i + 1}", patch_embed)
            setattr(self, f"block{i + 1}", block)
            setattr(self, f"norm{i + 1}", norm)



    def init_weights(self):
        print('init cfg', self.init_cfg)
        if self.init_cfg is None:
            for m in self.modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_init(m, std=.02, bias=0.)
                elif isinstance(m, nn.LayerNorm):
                    constant_init(m, val=1.0, bias=0.)
                elif isinstance(m, nn.Conv2d):
                    fan_out = m.kernel_size[0] * m.kernel_size[
                        1] * m.out_channels
                    fan_out //= m.groups
                    normal_init(
                        m, mean=0, std=math.sqrt(2.0 / fan_out), bias=0)
        else:
            super(LSKNet, self).init_weights()

    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False

    @torch.jit.ignore
    def no_weight_decay(self):
        return {
   'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better

    def get_classifier(self):
        return self.head

    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()

    def forward_features(self, x):
        B = x.shape[0]
        outs = []
        for i in range(self.num_stages):
            patch_embed = getattr(self, f"patch_embed{i + 1}")
            block = getattr(self, f"block{i + 1}")
            norm = getattr(self, f"norm{i + 1}")
            x, H, W = patch_embed(x)
            for blk in block:
                x = blk(x)
            x = x.flatten(2).transpose(1, 2)
            x = norm(x)
            x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
            outs.append(x)
        return outs

    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/137614259

相关文章
|
5月前
|
机器学习/深度学习 编解码 测试技术
【YOLOv10改进-注意力机制】LSKNet(Large Selective Kernel Network ):空间选择注意力
YOLOv10专栏聚焦遥感目标检测,提出LSKNet,首个探索大型选择性核的模型。LSKNet利用LSKblock Attention动态调整感受野,处理不同目标的上下文。创新点还包括极化滤波和增强技术,提升信息保留和非线性输出。在HRSC2016等遥感基准上取得SOTA性能。LSKNet代码展示其网络结构,包括多阶段模块和注意力机制。详细配置和任务说明见相关链接。
|
7月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
281 5
|
5月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLOv8改进 - 注意力机制】HCF-Net 之 PPA:并行化注意力设计 | 小目标
YOLO目标检测专栏介绍了HCF-Net,一种用于红外小目标检测的深度学习模型,它通过PPA、DASI和MDCR模块提升性能。PPA利用多分支特征提取和注意力机制,DASI实现自适应特征融合,MDCR通过多层深度可分离卷积细化空间特征。HCF-Net在SIRST数据集上表现出色,超越其他方法。论文和代码分别在[arxiv.org](https://arxiv.org/pdf/2403.10778)和[github.com/zhengshuchen/HCFNet](https://github.com/zhengshuchen/HCFNet)上。YOLOv8的PPA类展示了整合注意力机制的结构
|
6月前
|
测试技术 计算机视觉
【YOLOv8改进】LSKA(Large Separable Kernel Attention):大核分离卷积注意力模块 (论文笔记+引入代码)
YOLO目标检测专栏介绍了大可分卷积核注意力模块LSKA,用于解决VAN中大卷积核效率问题。LSKA通过分解2D卷积为1D卷积降低计算复杂度和内存占用,且使模型关注形状而非纹理,提高鲁棒性。在多种任务和数据集上,LSKA表现优于ViTs和ConvNeXt,代码可在GitHub获取。基础原理包括LSKA的卷积核分解设计和计算效率优化。示例展示了LSKA模块的实现。更多详情及配置参见相关链接。
|
6月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。
|
6月前
|
机器学习/深度学习 计算机视觉 知识图谱
【YOLOv8改进】ACmix(Mixed Self-Attention and Convolution) (论文笔记+引入代码)
YOLO目标检测专栏探讨了YOLO的改进,包括卷积和自注意力机制的创新结合。研究发现两者在计算上存在关联,卷积可分解为1×1卷积,自注意力也可视为1×1卷积的变形。由此提出ACmix模型,它整合两种范式,降低计算开销,同时提升图像识别和下游任务的性能。ACmix优化了移位操作,采用模块化设计,实现两种技术优势的高效融合。代码和预训练模型可在相关GitHub和MindSpore模型库找到。 yolov8中引入了ACmix模块,详细配置参见指定链接。
|
6月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了创新的多尺度注意力模块EMA,它强化通道和空间信息处理,同时降低计算负担。EMA模块通过通道重塑和并行子网络优化特征表示,增强长距离依赖建模,在保持效率的同时提升模型性能。适用于图像分类和目标检测任务,尤其在YOLOv8中表现出色。代码实现和详细配置可在文中链接找到。
|
6月前
|
机器学习/深度学习 编解码 PyTorch
【YOLOv8改进】HAT(Hybrid Attention Transformer,)混合注意力机制 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO系列的改进方法和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的Hybrid Attention Transformer (HAT)结合通道注意力和窗口自注意力,激活更多像素以提升图像超分辨率效果。通过交叉窗口信息聚合和同任务预训练策略,HAT优化了Transformer在低级视觉任务中的性能。实验显示,HAT在图像超分辨率任务上显著优于现有方法。模型结构包含浅层和深层特征提取以及图像重建阶段。此外,提供了HAT模型的PyTorch实现代码。更多详细配置和任务说明可参考相关链接。
|
6月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】Polarized Self-Attention: 极化自注意力 (论文笔记+引入代码)
该专栏专注于YOLO目标检测算法的创新改进和实战应用,包括卷积、主干网络、注意力机制和检测头的改进。作者提出了一种名为极化自注意(PSA)块,结合极化过滤和增强功能,提高像素级回归任务的性能,如关键点估计和分割。PSA通过保持高分辨率和利用通道及空间注意力,减少了信息损失并适应非线性输出分布。实验证明,PSA能提升标准基线和最新技术1-4个百分点。代码示例展示了如何在YOLOv8中实现PSA模块。更多详细信息和配置可在提供的链接中找到。
|
6月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。