数据库优化时的分割操作

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 【5月更文挑战第19天】本文介绍了数据库性能优化时可采用的分区、分片、分库、分表策略。分片引入分布式事务、跨库JOIN、SQL性能下降和自增主键管理等挑战。应谨慎使用,避免过早优化。优先考虑数据优化、硬件升级、读写分离和数据垂直、水平拆分。

1 简介

数据库的数据量达到一定程度之后,为避免带来系统性能上的瓶颈,此时对库和表进行操作可以提高服务的响应速度。

question_ans.png

需要进行数据的处理,采用的手段是分区、分片、分库、分表。

分片策略,分片也叫做Sharding,或是水平分库分表,都是相同的概念,与上面所讲到的水平分表的概念类似,唯一不同点就在于将这些拆分出来的子表保存在不同的数据库服务器中

    RANGE:按照范围划分,比如按照日期或者自增键进行范围划分。
    HASH: 采用 hash+mod 的组合划分数据。

分片(Sharding)包括RANGE(按范围)和HASH划分数据,可在客户端、中间件或服务端实现,如Sharding-JDBC、DBLE、MaxScale、TiDB等。 引入分布式事务、跨库JOIN、SQL性能下降和自增主键管理等挑战。应谨慎使用,避免过早优化。

2 分片实现方式

  • 客户端:

在客户端实现分片,如比较流行的分库分表框架Sharding-JDBC,就是在驱动层实现了分片功能,对上层应用保持透明。

  • 中间层:

    通过在应用与DB之间接入中间件(Proxy),如DBLE、MaxScale等开源中间件,用于实现后端数据分片与路由查询,对上层应用保持透明。

  • 服务端:

    使用某些分布式数据库,如TiDB、SequoiaDB等开源NewSQL,其在存储引擎层实现了数据分片功能,对上层应用保持透明。

    分片能够有效的缓解单机、单库、单表的性能瓶颈,突破IO、连接数、硬件资源等瓶颈。但是我们一旦将数据分片后,那么整个数据库架构就转换成了分布式架构,也会引发诸多问题:

  • 分布式事务:

    数据分片后,原先的本地事务就演变成了分布式事务了,一般需要通过二阶段或三阶段提交来保证分布式事务的ACID特性,性能也因此会有一定损耗。

  • 跨库join:

    分库分表后,不同的表分布在不同的服务器上,所以无法直接通过sql join来进行查询,这时候通常会建立冗余字段或全局表来实现跨库join。

  • SQL问题:

数据分片后,SQL的运行需要分发到各个节点计算,然后将结果合并后再返回,性能会有所下降。

并且当SQL较为复杂时,结果准确性也有可能出现问题。

这个问题也是数据分片实现中最为关键的点,只能不断优化完善,无法完全解决。

  • 自增主键:

数据分片后,我们将不能再依赖数据库自身的自增键生成机制,需要配置额外的全局序列来保证自增主键的全局唯一。

分片(Sharding)会为数据库维护和业务逻辑带来一系列复杂性和性能损耗,所以除非业务量大到万不得已,否则切莫过度设计、过早优化。

3 小结

面对数据库性能问题,我们可以先尝试用以下方式来解决:

    数据优化:优化SQL、索引及相关数据库参数配置。

    硬件扩展:提升服务器CPU、内存、磁盘IOPS等硬件配置。

    读写分离:通过读写分离架构提高数据库的整体性能。

    数据拆分:通过垂直拆分库表,或水平分表来解决大表性能问题

如果上述方式仍未能奏效,才考虑最复杂的方案:数据分片.

目录
相关文章
|
30天前
|
存储 缓存 监控
数据库优化技术:提升性能与效率的关键策略
【10月更文挑战第15天】数据库优化技术:提升性能与效率的关键策略
55 8
|
9天前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
10天前
|
存储 SQL 数据库
深入浅出后端开发之数据库优化实战
【10月更文挑战第35天】在软件开发的世界里,数据库性能直接关系到应用的响应速度和用户体验。本文将带你了解如何通过合理的索引设计、查询优化以及恰当的数据存储策略来提升数据库性能。我们将一起探索这些技巧背后的原理,并通过实际案例感受优化带来的显著效果。
28 4
|
12天前
|
SQL druid 数据库
如何进行数据库连接池的参数优化?
数据库连接池参数优化包括:1) 确定合适的初始连接数,考虑数据库规模和应用需求;2) 调整最大连接数,依据并发量和资源状况;3) 设置最小空闲连接数,平衡资源利用和响应速度;4) 优化连接超时时间,确保系统响应和资源利用合理;5) 配置连接有效性检测,定期检查连接状态;6) 调整空闲连接回收时间,适应访问模式并配合数据库超时设置。
|
20天前
|
SQL Oracle 关系型数据库
Oracle数据库优化方法
【10月更文挑战第25天】Oracle数据库优化方法
26 7
|
16天前
|
SQL 缓存 监控
数据库优化
【10月更文挑战第29天】数据库优化
27 1
|
20天前
|
存储 Oracle 关系型数据库
Oracle数据库优化策略
【10月更文挑战第25天】Oracle数据库优化策略
18 5
|
17天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
40 1
|
19天前
|
XML Java 数据库连接
如何使用HikariCP连接池来优化数据库连接管理
在Java应用中,高效管理数据库连接是提升性能的关键。本文介绍了如何使用HikariCP连接池来优化数据库连接管理。通过引入依赖、配置参数和获取连接,你可以显著提高系统的响应速度和吞吐量。 示例代码展示了从配置到使用的完整流程,帮助你轻松上手。
62 3
|
18天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
85 1