Redis与数据库同步指南:订阅Binlog实现数据一致性

本文涉及的产品
轻量应用服务器 2vCPU 4GiB,适用于搭建Web应用/小程序
轻量应用服务器 2vCPU 4GiB,适用于网站搭建
轻量应用服务器 2vCPU 4GiB,适用于搭建容器环境
简介: 本文由开发者小米分享,探讨分布式系统中的一致性问题,尤其是数据库和Redis一致性。文章介绍了全量缓存策略的优势,如高效读取和稳定性,但也指出其一致性挑战。为解决此问题,提出了通过订阅数据库的Binlog实现数据同步的方法,详细解释了工作原理和步骤,并分析了优缺点。此外,还提到了异步校准方案作为补充,以进一步保证数据一致性。最后,提醒在实际线上环境中需注意日志记录、逐步优化和监控报警。

大家好,我是29岁的小米,一名积极活泼、热爱分享技术的开发者。今天,我们来聊聊分布式系统中的一个重要话题——分布式一致性,特别是数据库和Redis的一致性问题。希望这篇文章能帮助你更好地理解并应用这些概念。

在互联网高速发展的今天,高效的数据读取是每个系统都必须面对的问题。为了实现高效读取,很多系统都采用了全量缓存的策略,即所有数据都存储在缓存里,所有的读服务请求都不再降级到数据库,完全依赖缓存。这种方式在某些场景下能有效解决因降级到数据库导致的毛刺问题,但同时也带来了新的挑战,特别是在数据更新时的分布式事务问题。今天,我们就来探讨如何通过订阅数据库的Binlog来实现数据同步,从而解决这些问题。

全量缓存:高效读取的利器

全量缓存的优势

全量缓存策略意味着将所有数据都放在缓存中,而不是只缓存部分热点数据。这种方式的好处显而易见:

  • 高效读取:所有请求都直接命中缓存,极大地提高了读取速度,减少了数据库的访问压力。
  • 稳定性:避免了因数据库访问带来的毛刺问题,使系统更加稳定。

然而,全量缓存也带来了一些新的挑战,尤其是如何保证缓存和数据库之间的一致性。

全量缓存的一致性挑战

在全量缓存策略下,任何数据更新都必须同时更新缓存和数据库。这种情况下,分布式事务的问题就显得尤为突出,因为一旦更新操作在缓存和数据库之间不同步,就会导致数据不一致。

订阅数据库的Binlog实现数据同步

为了保证缓存和数据库的一致性,我们可以采用订阅数据库的Binlog的方式来实现数据同步。Binlog是MySQL等数据库用来记录所有数据库表变化的日志,通过订阅Binlog,我们可以实时获取数据库的所有变更,并将这些变更同步到缓存中。

Binlog的工作原理

Binlog记录了所有对数据库的修改操作,通过订阅Binlog,我们可以获取到这些操作的详细信息。很多开源工具(如阿里的Canal)可以模拟主从复制的协议,通过读取主数据库的Binlog文件来获取主库的所有变更。这些工具开放了各种接口供业务服务获取数据,并将其写入缓存。

实现步骤

  • 挂载Binlog中间件:将Binlog中间件(如Canal)挂载至目标数据库上,实时获取数据库的变更数据。
  • 解析变更数据:对获取的变更数据进行解析,得到具体的修改操作。
  • 更新缓存:将解析后的数据写入缓存,保证缓存中的数据与数据库一致。

优点分析

采用Binlog订阅实现数据同步,有以下几个优点:

  • 大幅提升读取速度:所有读取操作都从缓存中获取,减少了数据库的负担。
  • 降低延迟:实时同步数据,保证缓存中的数据是最新的。
  • 解决分布式事务问题:Binlog的主从复制基于ACK机制,可以有效解决分布式事务的问题。
  • 确保数据一致性:如果同步缓存失败,未被确认的Binlog会被重复消费,最终保证数据写入缓存中。

缺点分析

尽管采用Binlog订阅有很多优点,但也存在一些不可避免的缺点:

  • 增加系统复杂度:引入Binlog中间件和同步机制,增加了系统的复杂度。
  • 消耗缓存资源:所有数据都存储在缓存中,需要更多的缓存资源。
  • 需要筛选和压缩数据:为了减少缓存占用,需要对数据进行筛选和压缩。
  • 极端情况数据丢失:在极端情况下,可能会出现数据丢失的问题。

异步校准方案:补齐数据的一种方式

为了进一步保证数据的一致性,我们可以采用异步校准方案来补齐数据。这种方案的核心思想是定期校验数据库和缓存中的数据是否一致,对于不一致的数据进行补齐。

异步校准的步骤

  • 数据校验:定期对数据库和缓存中的数据进行校验,发现不一致的数据。
  • 数据补齐:对于不一致的数据,通过异步方式将正确的数据写入缓存,保证数据一致性。

优缺点分析

异步校准方案有以下优点和缺点:

优点

  • 进一步保证数据一致性:通过定期校验和补齐数据,进一步保证了数据的一致性。
  • 降低数据库压力:异步校准在非高峰期进行,避免了对数据库的实时压力。

缺点

  • 消耗数据库性能:定期校验和补齐数据,会增加数据库的负担。
  • 复杂度增加:引入异步校准机制,增加了系统的复杂度。

线上环境的注意事项

在实际应用中,线上环境的稳定性至关重要。因此,在引入Binlog订阅和异步校准方案时,需要注意以下几点:

  • 记录日志:在初期阶段,详细记录日志以排查潜在问题。
  • 逐步优化:在初期阶段,重在发现问题和记录日志,后续逐步优化,不可本末倒置。
  • 监控报警:建立完善的监控和报警机制,及时发现并处理异常情况。

总结

全量缓存策略通过将所有数据存储在缓存中,实现了高效的读取操作,避免了降级到数据库带来的毛刺问题。然而,在数据更新时,如何保证缓存和数据库之间的一致性是一个挑战。通过订阅数据库的Binlog,我们可以实时获取数据库的变更数据,并将其同步到缓存中,从而有效解决分布式事务问题,保证数据一致性。

尽管这一方案存在一定的复杂度和资源消耗,但通过合理的设计和优化,可以有效提升系统的性能和稳定性。希望这篇文章能为你在实现分布式一致性方面提供一些思路和参考。

END

感谢你的阅读,如果你有任何疑问或需要进一步的讨论,欢迎在评论区留言。让我们一起学习,一起进步!

本文作者:小米,一个热爱技术分享的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号软件求生,获取更多技术干货!

相关文章
|
2月前
|
存储 NoSQL Redis
阿里云高性能数据库Tair(兼容 Redis)收费价格,稳定可靠成本低
阿里云高性能云数据库Tair兼容Redis,提供Redis开源版和Tair企业版,支持多种存储介质与灵活扩展,适用于高并发场景。Tair具备亚毫秒级稳定延迟,保障业务连续性。价格方面,Redis开源版年费从72元起,Tair企业版年费从1224元起,具体费用根据配置不同有所变化。
|
1月前
|
NoSQL 算法 Redis
【Docker】(3)学习Docker中 镜像与容器数据卷、映射关系!手把手带你安装 MySql主从同步 和 Redis三主三从集群!并且进行主从切换与扩容操作,还有分析 哈希分区 等知识点!
Union文件系统(UnionFS)是一种**分层、轻量级并且高性能的文件系统**,它支持对文件系统的修改作为一次提交来一层层的叠加,同时可以将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem) Union 文件系统是 Docker 镜像的基础。 镜像可以通过分层来进行继承,基于基础镜像(没有父镜像),可以制作各种具体的应用镜像。
315 5
|
7月前
|
存储 NoSQL 数据库
Redis 逻辑数据库与集群模式详解
Redis 是高性能内存键值数据库,广泛用于缓存与实时数据处理。本文深入解析 Redis 逻辑数据库与集群模式:逻辑数据库提供16个独立存储空间,适合小规模隔离;集群模式通过分布式架构支持高并发和大数据量,但仅支持 database 0。文章对比两者特性,讲解配置与实践注意事项,并探讨持久化及性能优化策略,助你根据需求选择最佳方案。
265 5
|
存储 缓存 数据库
解决缓存与数据库的数据一致性问题的终极指南
解决缓存与数据库的数据一致性问题的终极指南
684 63
|
消息中间件 canal 缓存
项目实战:一步步实现高效缓存与数据库的数据一致性方案
Hello,大家好!我是热爱分享技术的小米。今天探讨在个人项目中如何保证数据一致性,尤其是在缓存与数据库同步时面临的挑战。文中介绍了常见的CacheAside模式,以及结合消息队列和请求串行化的方法,确保数据一致性。通过不同方案的分析,希望能给大家带来启发。如果你对这些技术感兴趣,欢迎关注我的微信公众号“软件求生”,获取更多技术干货!
593 6
项目实战:一步步实现高效缓存与数据库的数据一致性方案
|
canal 缓存 NoSQL
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
根据对一致性的要求程度,提出多种解决方案:同步删除、同步删除+可靠消息、延时双删、异步监听+可靠消息、多重保障方案
Redis缓存与数据库如何保证一致性?同步删除+延时双删+异步监听+多重保障方案
|
8月前
|
NoSQL Java Redis
Redis Pipeline介绍 ---- 提高操作Redis数据库的执行效率。
Redis Pipeline是提高Redis执行效率的重要技术,通过批量发送命令,显著减少了网络往返次数,提高了系统的吞吐量和性能。在实际应用中,合理使用Pipeline可以有效优化Redis的性能,特别是在需要批量操作的场景下。本文通过Python和Java的示例代码展示了如何实现和使用Redis Pipeline,为开发者提供了具体的操作指南。
386 16
|
9月前
|
缓存 NoSQL Redis
Redis原理—2.单机数据库的实现
本文概述了Redis数据库的核心结构和操作机制。
Redis原理—2.单机数据库的实现
|
8月前
|
NoSQL 数据库 Redis
什么是 Redis 主从同步?
Redis 的主从同步(replication)机制,允许 Slave 从 Master 那里,通过网络传输拷贝到完整的数据备份,从而达到主从机制。 主数据库可以进行读写操作,当发生写操作的时候自动将数据同步到从数据库,而从数据库一般是只读的,并接收主数据库同步过来的数据。一个主数据库可以有多个从数据库,而一个从数据库只能有一个主数据库。 主从数据同步主要分二个阶段 : 第一阶段 : 全量复制阶段 ● slave节点请求增量同步 ● master节点判断replid,发现不一致,拒绝增量同步 ● master将完整内存数据生成RDB,发送RDB到slave ● slave清空本地数据,加载m
|
8月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)