Java多线程基础-8:单例模式及其线程安全问题(二)

简介: 单例模式是软件设计模式之一,确保一个类只有一个实例并提供全局访问点。


Java多线程基础-8:单例模式及其线程安全问题(一)+ https://developer.aliyun.com/article/1520523?spm=a2c6h.13148508.setting.14.61564f0e0MYpBx



三、线程安全问题


1、懒汉模式--线程不安全,饿汉模式--线程安全

在Java多线程编程中,非常重要的一个问题就是线程安全问题。上述提到的两个代码,是线程安全的吗?即,多个线程下调用getInstance()是否会出现问题?



结论是:饿汉模式是线程安全的,而懒汉模式不是线程安全的。


比对线程不安全的原因:线程安全问题及解决措施


线程的抢占式执行。

多个线程修改同一变量。

修改操作不是原子的。

内存可见性问题。

指令重排序。

这里,引起懒汉模式线程不安全的最直接原因,是多个线程修改同一变量。


在饿汉模式的getInstance()中,只是单纯地读操作(return),不涉及修改。而懒汉模式的getInstance()中有一个这样的操作:先判定是否为null,再进行修改,再返回。




很明显,这里包含了修改的操作。上面的懒汉模式代码在多线程下,可能无法保证创建对象的唯一性。如下图情况中,t1和t2都会执行到对象创建的代码,从而创建出多份对象。




多创建一个对象,听起来似乎问题不大,其实不然。对象是有大有小的,有些对象管理的内存数据可能会很多,甚至可能多达几百G。如果n个线程一起调用,创建出了n个这样大的对象,后果是非常严重的。


2、初步解决:懒汉模式的线程安全问题


深入来说,引起上述问题的原因是if判定操作与修改操作不是原子的。可以通过加锁来解决这个问题。


但是,考虑到多线程代码的复杂性,不是在代码中任意写个加锁,就一定线程安全了。如下面代码所示:将synchronized加在了new对象的操作上,且以类对象作为锁对象。这样的加锁方式是不可行的,因为原代码出现线程不安全原因就是因为if判定操作与new操作不是原子的,而只把锁加载new操作上,并不能保证if判定操作和修改操作整体的原子性。



因此,应该把if操作也放到锁里,才能保证判定和new是一个原子操作。


    //获取instance实例
    public static SingletonLazy getInstance() {
        synchronized (SingletonLazy.class) {
            if (instance == null) {
                instance = new SingletonLazy();
            }
        }
        return instance;
    }


当然,也可以直接将锁加在方法上,直接保证整个方法都是原子的。


    //获取instance实例
    synchronized public static SingletonLazy getInstance() {
        if (instance == null) {
            instance = new SingletonLazy();
        }
        return instance;
    }


3、代码问题-1:加锁导致程序效率低——解决:更改加锁的位置


在之前线程安全的篇章中提到过,加锁其实是一种非常低效的方式,因为加锁意味着会出现阻塞等待。事实上,应该“非必要,不加锁”。而我们上述的加锁方式中存在一个问题:不管什么时候调用getInstance(),都会触发锁的竞争。



然而其实,此处的线程不安全只发生在首次创建对象这里。一旦对象new好了,后续再调用getInstance(),就是单纯的读操作,就没有线程安全问题了,也就没必要再加锁了。


怎么优化呢?我们就需要针对加锁再做一次判定:


什么时候需要加锁?——对象为空的时候。


因此,要再加一层if判断,用于判断需要加锁的情况:


    //获取instance实例
    public static SingletonLazy getInstance() {
        // 这个条件用于判断是否要加锁
        // 如果对象已经有了,就不必加锁了,此时本身就是线程安全的
        if(instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }


注意这两个if(instance == null)代码的辨析:



并且,虽然这俩代码是挨着的,但是实际上它们执行的时机差别会很大。


按照我们在单线程代码中的理解,如果两行代码紧挨着,那么执行的时候,这两行代码会被迅速执行完,可以近似地看作它们是同一时机被执行。


但是,在多线程且上述两个if判断间隔着一层synchronized加锁的情况下,就不能简单地这样理解了。


加锁就可能导致线程阻塞,而等到线程阻塞被接触时,可能早已是“沧海桑田”。换句话说,这两行代码虽然看起来是相邻的,但它们执行的时间间隔可能会非常长。虽然两个条件代码完全相同,但若调用的时间间隔长了,判断结果也可能会不同。


比如在一个线程执行时,刚开始instance为null,第一个if判定成立,进入外层if;接下来获取锁时却发现,锁已经被别的线程获取了,那么这个线程此时就只能阻塞等待;等到这个线程结束阻塞、再往下走的时候,instance却已经被别的线程创建好了,不再为null,那么第二个条件判定就不成立了;该线程不会进入第二层if,也就不会重复再new一个对象了。


4、代码问题-2:new操作引发指令重排序——解决:以volatile修饰


在之前线程安全的篇章中提到过,指令重排序也可能导致线程不安全。new操作包括3个步骤:1、创建内存;2、调用构造方法;3、把地址赋值给引用。这其中就可能存在指令重排序:步骤2和步骤3的顺序可以调换。





如果程序按照 1-3-2 的方式执行new操作,就可能出现问题:


若instance为null,当t1线程执行完1和3这两个步骤后,线程突然被调度到t2;t2再去判定条件,但由于在t1中instance已经获取了内存地址,因此instance非null,条件不成立,会直接返回实例的引用。此时,t2拿到的是一个没装修过的毛坯房。


如果接下来t2继续毛坯房的后续方法,可能都是将错就错了。



总而言之,这样的线程调度时机,可能导致t2拿到的实例是不完整的,从而就出现问题了。虽然这个过程是一个极端小概率的情况,但在服务器高并发、大数据的情况下,一旦出问题,后果仍然是非常严重的。


如何解决这个问题?很简单,将instance加上volatile即可。volatile可以禁止指令重排序。


    //加上volatile
    volatile private static SingletonLazy instance = null;
 
    //获取instance实例
    public static SingletonLazy getInstance() {
        // 这个条件用于判断是否要加锁
        // 如果对象已经有了,就不必加锁了,此时本身就是线程安全的
        if(instance == null) {
            synchronized (SingletonLazy.class) {
                if (instance == null) {
                    instance = new SingletonLazy();
                }
            }
        }
        return instance;
    }


补充:这里是否涉及到内存可见性问题是存疑的。内存可见性问题的发生是由于编译器优化掉了寄存器从内存中load的这一操作,从而使得每一次读取数据的时并没有真正从内存中读取,而是只从寄存器中读取。在一个线程频繁写,一个线程频繁读的情况下,可能会出现内存可见性的问题。但是,上述代码是否涉及“频繁读”?假设N个线程一起调用,是否就相当于读了N次,这样不就会触发编译器的优化操作?


这其实是不一定的。因为每一个线程,会有自己的一套寄存器,这其中是否会出现内存安全性问题,是很难确定的。


四、***小结:单例模式的线程安全问题


  • 饿汉模式:天然就是安全的,只是读操作。


  • 懒汉模式:不安全的有读操作,也有写操作。如何保证懒汉模式的线程安全问题:
  1. 加锁,把 if 和 new 变成原子操作。


  1. 双重 if,减少不必要的加锁操作。


  1. 使用 volatile 禁止指重排序,保证后续线程肯定拿到的是完整对象。


相关文章
|
5天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
22 3
|
5天前
|
NoSQL Redis
单线程传奇Redis,为何引入多线程?
Redis 4.0 引入多线程支持,主要用于后台对象删除、处理阻塞命令和网络 I/O 等操作,以提高并发性和性能。尽管如此,Redis 仍保留单线程执行模型处理客户端请求,确保高效性和简单性。多线程仅用于优化后台任务,如异步删除过期对象和分担读写操作,从而提升整体性能。
21 1
|
3天前
|
缓存 安全 Java
【JavaEE】——单例模式引起的多线程安全问题:“饿汉/懒汉”模式,及解决思路和方法(面试高频)
单例模式下,“饿汉模式”,“懒汉模式”,单例模式下引起的线程安全问题,解锁思路和解决方法
|
1月前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
2月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
35 3
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
25 2
|
2月前
|
Java
Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口
【10月更文挑战第20天】《JAVA多线程深度解析:线程的创建之路》介绍了Java中多线程编程的基本概念和创建线程的两种主要方式:继承Thread类和实现Runnable接口。文章详细讲解了每种方式的实现方法、优缺点及适用场景,帮助读者更好地理解和掌握多线程编程技术,为复杂任务的高效处理奠定基础。
41 2
|
2月前
|
Java 开发者
Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点
【10月更文挑战第20天】Java多线程初学者指南:介绍通过继承Thread类与实现Runnable接口两种方式创建线程的方法及其优缺点,重点解析为何实现Runnable接口更具灵活性、资源共享及易于管理的优势。
47 1
|
1月前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
67 0
|
7月前
|
安全 Java
java保证线程安全关于锁处理的理解
了解Java中确保线程安全的锁机制:1)全局synchronized方法实现单例模式;2)对Vector/Collections.SynchronizedList/CopyOnWriteArrayList的部分操作加锁;3)ConcurrentHashMap的锁分段技术;4)使用读写锁;5)无锁或低冲突策略,如Disruptor队列。
50 2