微软开源4.2B参数多模态SLM模型Phi-3-vision,魔搭社区推理、微调实战教程来啦!

简介: 在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。

在 Microsoft Build 2024 上,微软持续开源了 Phi-3 系列的新模型们。包括 Phi-3-vision,这是一种将语言和视觉功能结合在一起的多模态模型。

Phi-3家族

Phi-3 系列模型是功能强大、性价比高的小型语言模型 (SLM),在各种语言、推理、编码和数学基准测试中,效果优异。它们使用高质量的训练数据进行训练。

Phi-3 模型系列共有四种模型;每种模型都经过安全保障进行指令调整和开发,以确保可以直接使用,目前均已开源。

  • Phi-3-vision是一个具有语言和视觉功能的 4.2B 参数多模态模型。
  • Phi-3-mini是一个 3.8B 参数语言模型,有两种上下文长度(128K和4K)。
  • Phi-3-small是一个 7B 参数语言模型,有两种上下文长度(128K和8K)。
  • Phi-3-medium是一个 14B 参数语言模型,有两种上下文长度(128K和4K)。

模型种类

模型名称

模型链接

Phi-3-vision

Phi-3-vision-128k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-vision-128k-instruct

Phi-3-mini

Phi-3-mini-128k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct

Phi-3-mini-4k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct

Phi-3-mini-128k-instruct-onnx

https://modelscope.cn/models/LLM-Research/Phi-3-mini-128k-instruct-onnx

Phi-3-mini-4k-instruct-onnx

https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct-onnx

Phi-3-mini-4k-instruct-onnx-web

https://modelscope.cn/models/LLM-Research/Phi-3-mini-4k-instruct-onnx-web

Phi-3-small

Phi-3-small-8k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-small-8k-instruct/summary

Phi-3-small-8k-instruct-onnx-cuda

https://modelscope.cn/models/LLM-Research/Phi-3-small-8k-instruct-onnx-cuda/summary

Phi-3-small-128k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-small-128k-instruct

Phi-3-small-128k-instruct-onnx-cuda

https://modelscope.cn/models/LLM-Research/Phi-3-small-128k-instruct-onnx-cuda

Phi-3-medium

Phi-3-medium-128k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct

Phi-3-medium-4k-instruct

https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct

Phi-3-medium-4k-onnx-directml

https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-directml

Phi-3-medium-4k-onnx-cuda

https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-cuda

Phi-3-medium-4k-onnx-cpu

https://modelscope.cn/models/LLM-Research/Phi-3-medium-4k-instruct-onnx-cpu

Phi-3-medium-128k-onnx-directml

https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-directml

Phi-3-medium-128k-onnx-cuda

https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-cuda

Phi-3-medium-128k-onnx-cpu

https://modelscope.cn/models/LLM-Research/Phi-3-medium-128k-instruct-onnx-cpu

Phi-3 模型已经过优化,可以在各种硬件上运行。ONNX (ONNX Runtime | Phi-3 Small and Medium Models are now optimized with ONNX Runtime and DirectML)格式和 DirectML提供优化过的模型权重,为开发人员提供跨各种设备和平台(包括移动和 Web 部署)的支持。Phi-3 模型还可以作为NVIDIA NIM推理微服务提供,具有标准 API 接口,可以部署在任何地方(Production-Ready APIs That Run Anywhere | NVIDIA),并针对 NVIDIA GPU(https://blogs.nvidia.com/blog/microsoft-build-optimized-ai-developers/)和Intel 加速器(Microsoft Phi-3 GenAI Models with Intel AI Solutions)上的推理进行了优化。

将多模态引入Phi-3

Phi-3-vision 是 Phi-3 系列中的第一个多模态模型,它将文本和图像结合在一起,并具有推理现实世界图像以及从图像中提取和推理文本的能力。它还针对图表和图解理解进行了优化,可用于生成见解和回答问题。Phi-3-vision 以 Phi-3-mini 的语言功能为基础,继续在小型模型中整合强大的语言和图像推理质量。

模型推理

多模态模型推理(Phi-3-vision-128k-instruct)

在魔搭社区的免费GPU算力体验Phi-3多模态模型(单卡A10)

推理代码


from PIL import Image 
import requests 
from modelscope import snapshot_download
from transformers import AutoModelForCausalLM 
from transformers import AutoProcessor 
model_id = snapshot_download("LLM-Research/Phi-3-vision-128k-instruct" )
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) 
messages = [ 
    {"role": "user", "content": "<|image_1|>\n图片里面有什么?"}, 
    {"role": "assistant", "content": "该图表显示了同意有关会议准备情况的各种陈述的受访者的百分比。它显示了五个类别:“有明确和预先定义的会议目标”、“知道在哪里可以找到会议所需的信息”、“在受邀时了解我的确切角色和职责”、“拥有管理工具” 诸如记笔记或总结之类的管理任务”,以及“有更多的专注时间来充分准备会议”。每个类别都有一个关联的条形图,指示一致程度,按 0% 到 100% 的范围进行衡量。"}, 
    {"role": "user", "content": "提供富有洞察力的问题来引发讨论。"} 
] 
url = "https://assets-c4akfrf5b4d3f4b7.z01.azurefd.net/assets/2024/04/BMDataViz_661fb89f3845e.png" 
image = Image.open(requests.get(url, stream=True).raw) 
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0") 
generation_args = { 
    "max_new_tokens": 500, 
    "temperature": 0.0, 
    "do_sample": False, 
} 
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) 
# remove input tokens 
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 
print(response)


显存占用:


跨平台推理(Phi-3-medium-4k-instruct-onnx-cpu)

配置:

step1: 下载模型

git clone https://www.modelscope.cn/LLM-Research/Phi-3-medium-4k-instruct-onnx-cpu.git

step2:安装依赖

pip install --pre onnxruntime-genai

step3:运行模型

curl https://raw.githubusercontent.com/microsoft/onnxruntime-genai/main/examples/python/phi3-qa.py -o phi3-qa.py
python phi3-qa.py -m Phi-3-medium-4k-instruct-onnx-cpu/cpu-int4-rtn-block-32-acc-level-4

体验对话效果


模型微调

SWIFT已经支持Phi3系列模型的微调,包括纯文本模型如Phi3-mini-128k-instruct、Phi3-small-128k-instruct、Phi3-middle-128k-instruct等,也包括了Phi3的多模态模型Phi-3-vision-128k-instruct。

下面以多模态模型为例给出微调最佳实践:

# Experimental environment: 4 * A100
# 4 * 18GB GPU memory
nproc_per_node=4
PYTHONPATH=../../.. \
CUDA_VISIBLE_DEVICES=0,1,2,3 \
torchrun \
    --nproc_per_node=$nproc_per_node \
    --master_port 29500 \
    llm_sft.py \
    --model_type phi3-vision-128k-instruct \
    --model_revision master \
    --sft_type lora \
    --tuner_backend peft \
    --template_type AUTO \
    --dtype AUTO \
    --output_dir output \
    --ddp_backend nccl \
    --dataset coco-en-2-mini \
    --train_dataset_sample -1 \
    --num_train_epochs 1 \
    --max_length 4096 \
    --check_dataset_strategy warning \
    --lora_rank 8 \
    --lora_alpha 32 \
    --lora_dropout_p 0.05 \
    --lora_target_modules ALL \
    --gradient_checkpointing true \
    --batch_size 1 \
    --weight_decay 0.1 \
    --learning_rate 1e-4 \
    --gradient_accumulation_steps $(expr 16 / $nproc_per_node) \
    --max_grad_norm 0.5 \
    --warmup_ratio 0.03 \
    --eval_steps 100 \
    --save_steps 100 \
    --save_total_limit 2 \
    --logging_steps 10 \
    --use_flash_attn true \
    --ddp_find_unused_parameters true \


我们使用训练时长约3小时,训练loss收敛情况如下:



显存占用:


Phi3-vision支持多个图片传入,在训练后我们可以使用ckpt进行多图片推理:


显存占用:


点击链接👇直达原文

https://modelscope.cn/models/LLM-Research/Phi-3-vision-128k-instruct/summary

目录
打赏
0
2
3
0
154
分享
相关文章
零一万物Yi-34B-Chat 微调模型及量化版开源!魔搭社区最佳实践教程!
11月24日,零一万物基正式发布并开源微调模型 Yi-34B-Chat,可申请免费商用。同时,零一万物还为开发者提供了 4bit/8bit 量化版模型,Yi-34B-Chat 4bit 量化版模型可以直接在消费级显卡(如RTX3090)上使用。魔搭社区已支持下载、推理训练体验,并推出相关教程,欢迎大家来玩!
零一万物开源Yi-VL多模态大模型,魔搭社区推理&微调最佳实践来啦!
近期,零一万物Yi系列模型家族发布了其多模态大模型系列,Yi Vision Language(Yi-VL)多模态语言大模型正式面向全球开源。
Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践
deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
185 0
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
GLM-4-9B是智谱AI推出的新一代预训练模型GLM-4系列的开源版本,它在多个数据集上的测试中表现出高绩效,包括语义理解、数学问题解决、推理和代码理解等方面。GLM-4-9B模型有四个变体:基础版GLM-4-9B(8K)、对话版GLM-4-9B-Chat(128K)、超长上下文版GLM-4-9B-Chat-1M(1M)和多模态版GLM-4V-9B-Chat(8K)。用户可以通过魔搭社区提供的链接体验这些模型,包括在CPU上运行的版本和支持vLLM推理的版本。
智谱AI GLM4开源!支持多模态&长序列,魔搭推理、微调最佳实践来啦!
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
Meta发布了 Meta Llama 3系列,是LLama系列开源大型语言模型的下一代。在接下来的几个月,Meta预计将推出新功能、更长的上下文窗口、额外的模型大小和增强的性能,并会分享 Llama 3 研究论文。
Llama 3开源,魔搭社区手把手带你推理,部署,微调和评估
谷歌开源Gemma2!魔搭社区推理、微调最佳实践教程
Google面向全球研究人员和开发者发布并开源 Gemma 2 大语言模型!本次Gemma 2 系列为轻量级开放模型,提供9B和27B参数两种尺寸,采用全新的架构设计,性能表现优异。
幻方开源第二代MoE模型 DeepSeek-V2,魔搭社区推理、微调最佳实践教程
5月6日,幻方继1月份推出首个国产MoE模型,历时4个月,带来第二代MoE模型DeepSeek-V2,并开源了技术报告和模型权重,魔搭社区可下载体验。
Phi-3:小模型,大未来!(附魔搭社区推理、微调实战教程)
近期, Microsoft 推出 Phi-3,这是 Microsoft 开发的一系列开放式 AI 模型。Phi-3 模型是一个功能强大、成本效益高的小语言模型 (SLM),在各种语言、推理、编码和数学基准测试中,在同级别参数模型中性能表现优秀。为开发者构建生成式人工智能应用程序时提供了更多实用的选择。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等