Deepseek开源多模态LLM模型框架Janus,魔搭社区最佳实践

简介: deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。让我们一起来了解一下吧。

01

引言

deepseek近期推出了简单、统一且灵活的多模态框架Janus,它能够统一处理多模态理解和生成任务。与之前的研究不同的是,Janus将视觉编码解耦为独立的路径,并利用单一、统一的transformer架构进行处理。这种方法不仅缓解了视觉编码器在理解和生成任务中的冲突,还增强了框架的灵活性。

Janus采用了独立编码方法将纯文本理解、多模态理解和视觉生成分别转换为特征序列,并通过一个统一的自回归Transformers处理这些特征序列。对于纯文本理解任务,使用预训练模型中的分词器将文本转换为离散ID并获取每个ID对应的特征表示;对于多模态理解任务,使用SigLIP编码器从图像中提取高维语义特征并将它们展平成一维序列,然后使用理解适配器将这些图像特征映射到预训练模型的输入空间;对于视觉生成任务,使用VQ Tokenizer 将图像转换为离散ID,并将ID序列展平成一维序列,然后使用生成适配器将与每个 ID 对应的codebook embedding映射到 LLM 的输入空间中。最后,将这些特征序列连接起来形成一个多模态特征序列,并将其馈送给预训练模型进行处理。整个模型遵循自回归框架,无需特别设计attention mask。

Janus框架的主要改进在于其简单、统一且灵活的设计。首先,在架构上,Janus采用了独立编码方法将不同类型的输入转换为特征序列,并通过一个统一的自回归transformers处理这些特征序列,从而避免了针对不同类型输入设计不同的模块或attention mask。其次,在训练过程中,Janus采用了三个阶段的训练过程:第一阶段训练adapter和image head,第二阶段进行统一预训练,第三阶段进行监督微调。这种训练方式使得Janus能够逐步学习多模态理解和生成能力,并在各种场景下保持灵活性。

Janus主要解决了多模态理解与生成的问题。传统的多模态模型通常需要针对不同类型输入设计不同的模块或attention mask,这导致模型复杂度较高且难以扩展。而Janus通过采用独立编码方法将不同类型的输入转换为特征序列,并通过一个统一的自回归transformers处理这些特征序列,实现了多模态的理解与生成,并且具有简单、统一且灵活的特点。此外,Janus还支持多种扩展,例如选择更强的视觉编码器、采用动态高分辨率技术等,以进一步提高模型性能。

02

魔搭最佳实践

模型推理

环境安装

!git clone https://github.com/deepseek-ai/Janus.git
%cd Janus
!pip install -e .

视觉理解

import torch
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from modelscope import snapshot_download
# specify the path to the model
model_path = snapshot_download("deepseek-ai/Janus-1.3B")
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
    model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
    {
        "role": "User",
        "content": "<image_placeholder>\nConvert the formula into latex code.",
        "images": ["/mnt/workspace/Janus/images/equation.png"],
    },
    {"role": "Assistant", "content": ""},
]
# load images and prepare for inputs
pil_images = load_pil_images(conversation)
prepare_inputs = vl_chat_processor(
    conversations=conversation, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# # run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
# # run the model to get the response
outputs = vl_gpt.language_model.generate(
    inputs_embeds=inputs_embeds,
    attention_mask=prepare_inputs.attention_mask,
    pad_token_id=tokenizer.eos_token_id,
    bos_token_id=tokenizer.bos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    max_new_tokens=512,
    do_sample=False,
    use_cache=True,
)
answer = tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
print(f"{prepare_inputs['sft_format'][0]}", answer)

显存占用:

图片生成

import os
import PIL.Image
import torch
import numpy as np
from transformers import AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from modelscope import snapshot_download
# specify the path to the model
model_path = snapshot_download("deepseek-ai/Janus-1.3B")
vl_chat_processor: VLChatProcessor = VLChatProcessor.from_pretrained(model_path)
tokenizer = vl_chat_processor.tokenizer
vl_gpt: MultiModalityCausalLM = AutoModelForCausalLM.from_pretrained(
    model_path, trust_remote_code=True
)
vl_gpt = vl_gpt.to(torch.bfloat16).cuda().eval()
conversation = [
    {
        "role": "User",
        "content": "A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair",
    },
    {"role": "Assistant", "content": ""},
]
sft_format = vl_chat_processor.apply_sft_template_for_multi_turn_prompts(
    conversations=conversation,
    sft_format=vl_chat_processor.sft_format,
    system_prompt="",
)
prompt = sft_format + vl_chat_processor.image_start_tag
@torch.inference_mode()
def generate(
    mmgpt: MultiModalityCausalLM,
    vl_chat_processor: VLChatProcessor,
    prompt: str,
    temperature: float = 1,
    parallel_size: int = 16,
    cfg_weight: float = 5,
    image_token_num_per_image: int = 576,
    img_size: int = 384,
    patch_size: int = 16,
):
    input_ids = vl_chat_processor.tokenizer.encode(prompt)
    input_ids = torch.LongTensor(input_ids)
    tokens = torch.zeros((parallel_size*2, len(input_ids)), dtype=torch.int).cuda()
    for i in range(parallel_size*2):
        tokens[i, :] = input_ids
        if i % 2 != 0:
            tokens[i, 1:-1] = vl_chat_processor.pad_id
    inputs_embeds = mmgpt.language_model.get_input_embeddings()(tokens)
    generated_tokens = torch.zeros((parallel_size, image_token_num_per_image), dtype=torch.int).cuda()
    for i in range(image_token_num_per_image):
        outputs = mmgpt.language_model.model(inputs_embeds=inputs_embeds, use_cache=True, past_key_values=outputs.past_key_values if i != 0 else None)
        hidden_states = outputs.last_hidden_state
        
        logits = mmgpt.gen_head(hidden_states[:, -1, :])
        logit_cond = logits[0::2, :]
        logit_uncond = logits[1::2, :]
        
        logits = logit_uncond + cfg_weight * (logit_cond-logit_uncond)
        probs = torch.softmax(logits / temperature, dim=-1)
        next_token = torch.multinomial(probs, num_samples=1)
        generated_tokens[:, i] = next_token.squeeze(dim=-1)
        next_token = torch.cat([next_token.unsqueeze(dim=1), next_token.unsqueeze(dim=1)], dim=1).view(-1)
        img_embeds = mmgpt.prepare_gen_img_embeds(next_token)
        inputs_embeds = img_embeds.unsqueeze(dim=1)
    dec = mmgpt.gen_vision_model.decode_code(generated_tokens.to(dtype=torch.int), shape=[parallel_size, 8, img_size//patch_size, img_size//patch_size])
    dec = dec.to(torch.float32).cpu().numpy().transpose(0, 2, 3, 1)
    dec = np.clip((dec + 1) / 2 * 255, 0, 255)
    visual_img = np.zeros((parallel_size, img_size, img_size, 3), dtype=np.uint8)
    visual_img[:, :, :] = dec
    os.makedirs('generated_samples', exist_ok=True)
    for i in range(parallel_size):
        save_path = os.path.join('generated_samples', "img_{}.jpg".format(i))
        PIL.Image.fromarray(visual_img[i]).save(save_path)
generate(
    vl_gpt,
    vl_chat_processor,
    prompt,
)

显存占用:

模型体验

图片理解

Q:<image_placeholder>\nConvert the formula into latex code.

A:Sure, here is the LaTeX code for the formula:

\[ A_n = a_0 \left[ 1 + \frac{3}{4} \sum_{k=1}^{n} \left( \frac{4}{9} \right)^k \right] \]

图片生成:

prompt:A stunning princess from kabul in red, white traditional clothing, blue eyes, brown hair

生成图片:

模型微调

我们使用ms-swift对deepseek-janus进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调推理框架。

ms-swift开源地址:

https://github.com/modelscope/ms-swift

当前ms-swift只支持对deepseek-janus的vision tower、aligner和llm进行微调,暂时不支持对generator部分微调。通常,多模态大模型微调会使用自定义数据集进行微调。在这里,我们将展示可直接运行的demo。我们使用Latex-OCR数据集:https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR进行微调。

在开始微调之前,请确保您的环境已准备妥当。

git clone https://github.com/modelscope/ms-swift.git
cd ms-swift
pip install -e .[llm]

微调脚本:

# 默认:微调 LLM & aligner, 冻结 vision encoder
CUDA_VISIBLE_DEVICES=0 swift sft \
  --model_type deepseek-janus-1_3b \
  --model_id_or_path deepseek-ai/Janus-1.3B \
  --sft_type lora \
  --dataset latex-ocr-handwrite#5000 \
  --target_modules ALL
# Deepspeed ZeRO2 
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
  --model_type deepseek-janus-1_3b \
  --model_id_or_path deepseek-ai/Janus-1.3B \
  --sft_type lora \
  --dataset latex-ocr-handwrite#5000 \
  --deepspeed default-zero2 \
  --target_modules ALL

训练显存占用:

如果要使用自定义数据集,只需按以下方式进行指定:

# val_dataset可选,如果不指定,则会从dataset中切出一部分数据集作为验证集
    --dataset train.jsonl \
    --val_dataset val.jsonl \
{"query": "<image>55555", "response": "66666", "images": ["image_path"]}
{"query": "<image><image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}
{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response1"], ["query2", "response2"]]}

训练loss:

微调后推理脚本如下:

CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/deepseek-janus-1_3b/vx-xxx/checkpoint-xxx \
    --load_dataset_config true
# merge-lora & infer
CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/deepseek-janus-1_3b/vx-xxx/checkpoint-xxx \
    --load_dataset_config true --merge_lora true

推理效果:



点击链接👇即可跳转数据集~

https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR

相关文章
|
10天前
|
人工智能 自然语言处理 测试技术
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
Dream-7B是由香港大学与华为诺亚方舟实验室联合研发的开源扩散大语言模型,采用独特的掩码扩散范式,在文本生成、数学推理和代码编写等任务中展现出卓越性能。
75 3
能够双向推理的LLM!Dream-7B:港大联合华为开源的扩散推理模型,能够同时考虑前后文信息
|
21天前
|
人工智能 数据可视化 API
36.7K star!拖拽构建AI流程,这个开源LLM应用框架绝了!
`Flowise` 是一款革命性的低代码LLM应用构建工具,开发者通过可视化拖拽界面,就能快速搭建基于大语言模型的智能工作流。该项目在GitHub上线不到1年就斩获**36.7K星标**,被开发者誉为"AI时代的乐高积木"。
118 8
|
23天前
|
机器学习/深度学习 人工智能 算法
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
SWEET-RL是一种基于训练时信息的逐步评估算法,显著提升了多轮大型语言模型(LLM)代理在强化学习中的成功率。相比现有方法,SWEET-RL将成功率提高6%,使小型开源模型如Llama-3.1-8B达到甚至超越GPT-4O等大型专有模型性能。通过非对称Actor-Critic结构、创新优势函数参数化及两阶段训练流程,SWEET-RL优化了信用分配机制与泛化能力,降低了计算成本。ColBench基准测试显示,SWEET-RL在后端编程和前端设计任务中表现卓越,为AI代理训练技术带来突破性进展。
47 2
SWEET-RL:基于训练时信息的多轮LLM代理强化学习框架
|
1月前
|
人工智能 并行计算 语音技术
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
Open-LLM-VTuber 是一个开源的跨平台语音交互 AI 伴侣项目,支持实时语音对话、视觉感知和生动的 Live2D 动态形象,完全离线运行,保护用户隐私。
201 10
Open-LLM-VTuber:宅男福音!开源AI老婆离线版上线,实时语音+Live2D互动还会脸红心跳
|
14天前
|
人工智能 自然语言处理 数据可视化
89.4K star!这个开源LLM应用开发平台,让你轻松构建AI工作流!
Dify 是一款开源的 LLM 应用开发平台,通过直观的可视化界面整合 AI 工作流、RAG 管道、智能代理等功能,助你快速实现从原型到生产的跨越。支持本地部署和云端服务,提供企业级功能与完整 API 接口。
|
2月前
|
存储 Kubernetes 测试技术
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
企业级LLM推理部署新范式:基于ACK的DeepSeek蒸馏模型生产环境落地指南
94 12
|
2月前
|
机器学习/深度学习 搜索推荐 异构计算
LLM模型添加自定义Token代码示例:为Llama 3.2模型添加思考与回答标记
本文将介绍如何为大型语言模型(LLM)添加自定义token并进行训练,使模型能够有效地利用这些新增token。以Llama 3.2模型为基础,实现了类似DeepSeek R1中think和answer标记功能的扩展方法,通过监督微调使模型学习使用这些标记进行推理过程与答案输出的区分
95 0
LLM模型添加自定义Token代码示例:为Llama 3.2模型添加思考与回答标记
|
2月前
|
数据采集 人工智能 监控
Crawl4LLM:你的模型还在吃垃圾数据?CMU博士开源AI爬虫,自动筛选高价值网页,数据抓取质量飙升300%
Crawl4LLM 是清华大学和卡内基梅隆大学联合开发的智能爬虫系统,通过网页价值评估和优先级队列技术,显著提升大语言模型预训练数据采集效率。
168 4
|
1月前
|
机器学习/深度学习 数据采集 人工智能
DeepSeek R1 最新全面综述:R1 为什么能让 LLM 像人一样思考?
DeepSeek R1 最新全面综述:R1 为什么能让 LLM 像人一样思考?
|
2月前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
2221 20
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用

热门文章

最新文章