实时计算 Flink版产品使用合集之使用DTS从RDSMySQL数据库同步数据到云Kafka,增量同步数据延迟时间超过1秒。如何诊断问题并降低延迟

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink 1.17.1 Join维表时,对维表字段where过滤或维表中维表字段 这种会有问题吗?

Flink 1.17.1 Join维表时,对维表字段where过滤或维表中Join ... on ... and 维表字段

这种会有问题吗?



参考答案:

在Flink 1.17.1中,对维表字段进行WHERE过滤或者在JOIN语句中使用维表字段进行条件筛选通常是支持的,不会存在根本性的问题。

以下是一些示例:

  1. 使用WHERE过滤:
SELECT ...
FROM mainTable
JOIN dimensionTable
ON mainTable.joinKey = dimensionTable.joinKey
WHERE dimensionTable.filterColumn = 'someValue'

在这个例子中,Flink会在JOIN操作之后对维表(dimensionTable)的数据进行过滤,只保留filterColumn等于'someValue'的记录。

  1. 在JOIN语句中使用维表字段:
SELECT ...
FROM mainTable
JOIN dimensionTable
ON mainTable.joinKey = dimensionTable.joinKey
AND dimensionTable.filterColumn = 'someValue'

在这个例子中,Flink会在JOIN操作之前对维表的数据进行预过滤,只参与JOIN操作的维表记录是那些其filterColumn等于'someValue'的记录。

需要注意的是,这两种方式可能会对性能产生影响,特别是在维表很大的情况下。WHERE过滤和JOIN条件都会减少参与JOIN操作的维表记录数量,从而降低JOIN操作的计算复杂性和内存使用。但是,过于复杂的过滤条件可能会影响查询优化和执行效率。

此外,确保你的JOIN键和过滤条件上的数据类型匹配,并且这些字段已经建立了适当的索引(如果适用),以提高查询性能。在实际使用中,建议根据你的具体业务需求和数据特征来选择合适的JOIN和过滤策略,并进行性能测试和调优。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583804



问题二:flink 1.17.1有bug公布的网站吗?

flink 1.17.1有bug公布的网站吗?



参考答案:

开源可以看github和jira。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583803



问题三:在Flink为什么这个地方的水位线会跟现实时间差了8h?

在Flink为什么这个地方的水位线会跟现实时间差了8h?我设置的乱序荣热度是5分钟,跟现在的时间差距应该是5分钟,但是为什么差了8h5min。



参考答案:

用户在用某个时间戳作为 watermark 的时候,那个时间戳可能是 w/ timezone ,也可能 w/o timezone (他俩之间有8h差),在display 的时候,没有办法底下用的是哪种时间戳,所以总有一方会看到 8h 差。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583802



问题四:Flink这个问题怎么解决 ?

Flink这个问题怎么解决?



参考答案:

重启了一下试试。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583798



问题五:Flink怎么诊断问题出现在哪里呢?或者有没有降低延迟的办法呢?

用DTS从RDS MySQL数据库中同步数据到云Kafka中,增量同步数据延迟时间超过1秒,,连链路规格已经large最高的了,Flink怎么诊断问题出现在哪里呢?或者有没有降低延迟的办法呢?



参考答案:

可以逐一排查这些原因:

解决方案如下:

——参考来源于阿里云官方文档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583797

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7天前
|
消息中间件 存储 缓存
kafka 的数据是放在磁盘上还是内存上,为什么速度会快?
Kafka的数据存储机制通过将数据同时写入磁盘和内存,确保高吞吐量与持久性。其日志文件按主题和分区组织,使用预写日志(WAL)保证数据持久性,并借助操作系统的页缓存加速读取。Kafka采用顺序I/O、零拷贝技术和批量处理优化性能,支持分区分段以实现并行处理。示例代码展示了如何使用KafkaProducer发送消息。
|
4月前
|
消息中间件 存储 运维
为什么说Kafka还不是完美的实时数据通道
【10月更文挑战第19天】Kafka 虽然作为数据通道被广泛应用,但在实时性、数据一致性、性能及管理方面存在局限。数据延迟受消息堆积和分区再平衡影响;数据一致性难以达到恰好一次;性能瓶颈在于网络和磁盘I/O;管理复杂性涉及集群配置与版本升级。
174 1
|
4月前
|
消息中间件 Java Kafka
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
Flink-04 Flink Java 3分钟上手 FlinkKafkaConsumer消费Kafka数据 进行计算SingleOutputStreamOperatorDataStreamSource
76 1
|
6月前
|
vr&ar 图形学 开发者
步入未来科技前沿:全方位解读Unity在VR/AR开发中的应用技巧,带你轻松打造震撼人心的沉浸式虚拟现实与增强现实体验——附详细示例代码与实战指南
【8月更文挑战第31天】虚拟现实(VR)和增强现实(AR)技术正深刻改变生活,从教育、娱乐到医疗、工业,应用广泛。Unity作为强大的游戏开发引擎,适用于构建高质量的VR/AR应用,支持Oculus Rift、HTC Vive、Microsoft HoloLens、ARKit和ARCore等平台。本文将介绍如何使用Unity创建沉浸式虚拟体验,包括设置项目、添加相机、处理用户输入等,并通过具体示例代码展示实现过程。无论是完全沉浸式的VR体验,还是将数字内容叠加到现实世界的AR应用,Unity均提供了所需的一切工具。
233 0
|
6月前
|
消息中间件 存储 关系型数据库
实时计算 Flink版产品使用问题之如何使用Kafka Connector将数据写入到Kafka
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
9月前
|
关系型数据库 MySQL 数据挖掘
阿里云 SelectDB 携手 DTS ,一键实现 TP 数据实时入仓
DTS 作为阿里云核心的数据交互引擎,以其高效的实时数据流处理能力和广泛的数据源兼容性,为用户构建了一个安全可靠、可扩展、高可用的数据架构桥梁。阿里云数据库 SelectDB 通过与 DTS 联合,为用户提供了简单、实时、极速且低成本的事务数据分析方案。用户可以通过 DTS 数据传输服务,一键将自建 MySQL / RDS MySQL / PolarDB for MySQL 数据库,迁移或同步至阿里云数据库 SelectDB 的实例中,帮助企业在短时间内完成数据迁移或同步,并即时获得深度洞察。
阿里云 SelectDB 携手 DTS ,一键实现 TP 数据实时入仓
|
9月前
|
SQL 分布式计算 监控
在数据传输服务(DTS)中,要查看每个小时源端产生了多少条数据
【2月更文挑战第32天】在数据传输服务(DTS)中,要查看每个小时源端产生了多少条数据
88 6
|
9月前
DTS数据传输延迟可能有多种原因
【1月更文挑战第16天】【1月更文挑战第79篇】DTS数据传输延迟可能有多种原因
320 2
|
3月前
|
弹性计算 安全 容灾
阿里云DTS踩坑经验分享系列|使用VPC数据通道解决网络冲突问题
阿里云DTS作为数据世界高速传输通道的建造者,每周为您分享一个避坑技巧,助力数据之旅更加快捷、便利、安全。本文介绍如何使用VPC数据通道解决网络冲突问题。
145 0
|
6月前
|
NoSQL MongoDB 数据库
DTS 的惊天挑战:迁移海量 MongoDB 数据时,捍卫数据准确完整的生死之战!
【8月更文挑战第7天】在数字化时代,大数据量的MongoDB迁移至关重要。DTS(数据传输服务)通过全面的数据评估、可靠的传输机制(如事务保证一致性)、异常处理(如回滚或重试),以及迁移后的数据校验来确保数据准确无损。DTS还处理数据转换与映射,即使面对不同数据库结构也能保持数据完整性,为企业提供可靠的数据迁移解决方案。
86 2

相关产品

  • 实时计算 Flink版