实时计算 Flink版产品使用合集之使用DTS从RDSMySQL数据库同步数据到云Kafka,增量同步数据延迟时间超过1秒。如何诊断问题并降低延迟

简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink 1.17.1 Join维表时,对维表字段where过滤或维表中维表字段 这种会有问题吗?

Flink 1.17.1 Join维表时,对维表字段where过滤或维表中Join ... on ... and 维表字段

这种会有问题吗?



参考答案:

在Flink 1.17.1中,对维表字段进行WHERE过滤或者在JOIN语句中使用维表字段进行条件筛选通常是支持的,不会存在根本性的问题。

以下是一些示例:

  1. 使用WHERE过滤:
SELECT ...
FROM mainTable
JOIN dimensionTable
ON mainTable.joinKey = dimensionTable.joinKey
WHERE dimensionTable.filterColumn = 'someValue'

在这个例子中,Flink会在JOIN操作之后对维表(dimensionTable)的数据进行过滤,只保留filterColumn等于'someValue'的记录。

  1. 在JOIN语句中使用维表字段:
SELECT ...
FROM mainTable
JOIN dimensionTable
ON mainTable.joinKey = dimensionTable.joinKey
AND dimensionTable.filterColumn = 'someValue'

在这个例子中,Flink会在JOIN操作之前对维表的数据进行预过滤,只参与JOIN操作的维表记录是那些其filterColumn等于'someValue'的记录。

需要注意的是,这两种方式可能会对性能产生影响,特别是在维表很大的情况下。WHERE过滤和JOIN条件都会减少参与JOIN操作的维表记录数量,从而降低JOIN操作的计算复杂性和内存使用。但是,过于复杂的过滤条件可能会影响查询优化和执行效率。

此外,确保你的JOIN键和过滤条件上的数据类型匹配,并且这些字段已经建立了适当的索引(如果适用),以提高查询性能。在实际使用中,建议根据你的具体业务需求和数据特征来选择合适的JOIN和过滤策略,并进行性能测试和调优。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583804



问题二:flink 1.17.1有bug公布的网站吗?

flink 1.17.1有bug公布的网站吗?



参考答案:

开源可以看github和jira。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583803



问题三:在Flink为什么这个地方的水位线会跟现实时间差了8h?

在Flink为什么这个地方的水位线会跟现实时间差了8h?我设置的乱序荣热度是5分钟,跟现在的时间差距应该是5分钟,但是为什么差了8h5min。



参考答案:

用户在用某个时间戳作为 watermark 的时候,那个时间戳可能是 w/ timezone ,也可能 w/o timezone (他俩之间有8h差),在display 的时候,没有办法底下用的是哪种时间戳,所以总有一方会看到 8h 差。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583802



问题四:Flink这个问题怎么解决 ?

Flink这个问题怎么解决?



参考答案:

重启了一下试试。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583798



问题五:Flink怎么诊断问题出现在哪里呢?或者有没有降低延迟的办法呢?

用DTS从RDS MySQL数据库中同步数据到云Kafka中,增量同步数据延迟时间超过1秒,,连链路规格已经large最高的了,Flink怎么诊断问题出现在哪里呢?或者有没有降低延迟的办法呢?



参考答案:

可以逐一排查这些原因:

解决方案如下:

——参考来源于阿里云官方文档



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/583797

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
948 43
|
5月前
|
关系型数据库 MySQL 数据库
自建数据库如何迁移至RDS MySQL实例
数据库迁移是一项复杂且耗时的工程,需考虑数据安全、完整性及业务中断影响。使用阿里云数据传输服务DTS,可快速、平滑完成迁移任务,将应用停机时间降至分钟级。您还可通过全量备份自建数据库并恢复至RDS MySQL实例,实现间接迁移上云。
|
6月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
401 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
10月前
|
存储 消息中间件 Kafka
基于 Flink 的中国电信星海时空数据多引擎实时改造
本文整理自中国电信集团大数据架构师李新虎老师在Flink Forward Asia 2024的分享,围绕星海时空智能系统展开,涵盖四个核心部分:时空数据现状、实时场景多引擎化、典型应用及未来展望。系统日处理8000亿条数据,具备亚米级定位能力,通过Flink多引擎架构解决数据膨胀与响应时效等问题,优化资源利用并提升计算效率。应用场景包括运动状态识别、个体行为分析和群智感知,未来将推进湖仓一体改造与三维时空服务体系建设,助力数字化转型与智慧城市建设。
930 3
基于 Flink 的中国电信星海时空数据多引擎实时改造
|
6月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
618 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
|
6月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
2595 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
7月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
477 1
京东零售基于Flink的推荐系统智能数据体系
|
10月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
1180 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
分布式计算 关系型数据库 MySQL
E-Mapreduce如何处理RDS的数据
目前网站的一些业务数据存在了数据库中,这些数据往往需要做进一步的分析,如:需要跟一些日志数据关联分析,或者需要进行一些如机器学习的分析。在阿里云上,目前E-Mapreduce可以满足这类进一步分析的需求。
5125 0

热门文章

最新文章

相关产品

  • 实时计算 Flink版