milvus向量库的工具类(添加分区、删除分区、删除记录)等

简介: 【5月更文挑战第18天】milvus向量库的工具类(添加分区、删除分区、删除记录)等

截至我的知识截止日期(2021年9月),Milvus 是一个开源的向量数据库,它提供了高效的向量存储、检索和管理功能。它主要用于处理大规模向量数据,例如人脸识别、图像搜索、自然语言处理等领域。

Milvus提供了多种客户端库来与其进行交互,而您提到的功能,如添加分区、删除分区和删除记录,通常可以通过客户端库来实现。这里我将简要介绍如何使用Python SDK来执行这些操作,以便您进行参考。请注意,由于Milvus是不断发展的项目,可能在未来有更新的内容。建议您查阅官方文档以获得最新信息。

在进行以下示例之前,请确保您已经安装了pymilvus Python SDK。您可以通过以下方式来安装它:

pip install pymilvus

接下来,我们来演示如何执行所提到的操作:

添加分区

from pymilvus import Milvus, DataType, CollectionSchema

# 建立与Milvus服务器的连接
milvus = Milvus(host='localhost', port='19530')

# 定义集合名称和维度
collection_name = 'my_collection'
dimension = 128

# 定义一个新的分区名称
partition_name = 'my_partition'

# 创建集合
collection_schema = CollectionSchema(collection_name, dimension, index_file_size=1024, metric_type=DataType.FLOAT_L2)
milvus.create_collection(collection_schema)

# 添加分区
milvus.create_partition(collection_name, partition_name)

删除分区

from pymilvus import Milvus

# 建立与Milvus服务器的连接
milvus = Milvus(host='localhost', port='19530')

# 定义集合名称和分区名称
collection_name = 'my_collection'
partition_name = 'my_partition'

# 删除分区
milvus.drop_partition(collection_name, partition_name)

删除记录

from pymilvus import Milvus

# 建立与Milvus服务器的连接
milvus = Milvus(host='localhost', port='19530')

# 定义集合名称
collection_name = 'my_collection'

# 定义要删除的向量ID列表
vector_ids_to_delete = [1, 5, 10]

# 删除记录
milvus.delete_entity_by_id(collection_name, vector_ids_to_delete)

请注意,上述代码仅为示例,并未包含错误处理等完整逻辑。在实际应用中,您可能需要添加适当的错误处理和边界检查。

在实际应用中,根据您的业务需求,您可能还需要使用其他功能,例如插入向量、搜索向量等。希望这些示例能够帮助您开始使用Milvus的工具类功能。如有需要,请参考官方文档以获取更详细的信息:https://milvus.io/docs/zh-CN/

目录
相关文章
|
NoSQL 安全 Java
Spring Boot3整合Redis
Spring Boot3整合Redis
1379 1
|
8月前
|
SQL 人工智能 自然语言处理
别让你的大模型被忽悠了,聊聊prompt注入攻击
本文探讨了Prompt工程中的隐私与安全问题,重点分析了“奶奶漏洞”及更广泛的Prompt攻击现象,特别是Prompt注入的原理与防御手段。Prompt注入通过构造恶意输入突破模型限制,使LLM执行非预期操作。文章介绍了直接注入和间接注入类型,并提供了多种防御方案,如输入过滤、强化系统指令、接入第三方校验库及多模型协作防御。此外,还讨论了Prompt逆向工程及其正负影响,以及恶意MCP服务投毒的实际案例,如GitHub Copilot漏洞。最后提出了动态权限控制和持续安全监测等解决策略。
|
存储 自然语言处理 开发工具
milvus向量库的工具类(添加分区、删除分区、删除记录)
【5月更文挑战第13天】milvus向量库的工具类(添加分区、删除分区、删除记录)
850 6
|
9月前
|
存储 人工智能
Ollama 本地运行 Qwen 3
本指南介绍如何安装和配置Ollama。首先,从官网下载Ollama并选择适合的安装方式:傻瓜式安装或指定路径安装。安装完成后,可通过系统环境变量配置模型下载路径(可选)。最后,运行对应模型命令进行测试使用,包括选择参数量、复制命令并在命令行工具中执行,验证安装是否成功。
4397 19
|
人工智能 Linux Docker
一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型(1)
近年来,大模型在AI领域崭露头角,成为技术创新的重要驱动力。从AlphaGo的胜利到GPT系列的推出,大模型展现出了强大的语言生成、理解和多任务处理能力,预示着智能化转型的新阶段。然而,要将大模型的潜力转化为实际生产力,需要克服理论到实践的鸿沟,实现从实验室到现实世界的落地应用。阿里云去年在云栖大会上发布了一系列基于通义大模型的创新应用,标志着大模型技术开始走向大规模商业化和产业化。这些应用展示了大模型在交通、电力、金融、政务、教育等多个行业的广阔应用前景,并揭示了构建具有行业特色的“行业大模型”这一趋势,大模型知识库概念随之诞生。
157835 30
|
小程序 前端开发
微信综合购物商城小程序ui模板源码
微信电商小程序前端页面,综合购物商城ui界面模板。主要功能包含:电商主页、商品分类、购物车、购物车结算、我的个人中心管理、礼券、签到、新人专享、专栏、商品详情页、我的订单、我的余额、我的积分、我的收藏、我的地址、我的礼券等。这是一款非常齐全的电商小程序前端模板。
597 4