2024年Python最新刷爆全网的动态条形图,原来5行Python代码就能实现!,2024年最新Python面试必问的HashMap

简介: 2024年Python最新刷爆全网的动态条形图,原来5行Python代码就能实现!,2024年最新Python面试必问的HashMap

选取如下5个国家的数据

bcr.bar_chart_race(df, ‘covid19_horiz.gif’, fixed_order=[‘Iran’, ‘USA’, ‘Italy’, ‘Spain’, ‘Belgium’])

05 固定数值轴,使其不发生动态变化

# 设置数值的最大值,固定数值轴
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, fixed_max=True)

06 图像帧数,默认10帧,此处设置为3帧,可以发现图像明显变得有些卡顿

# 图像帧数。数值越小,越不流畅。越大,越流畅。
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, steps_per_period=3)

07 设置帧率,单位时间默认为500ms

# 设置20帧的总时间,此处为200ms
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, steps_per_period=20, period_length=200)

08 设置每帧增加的标签时间,默认为False

# 输出MP4
bcr.bar_chart_race(df, ‘covid19_horiz.mp4’, interpolate_period=True)

09 绘图属性设置

# figsize-设置画布大小,默认(6, 3.5)
# dpi-图像分辨率,默认144
# label_bars-显示柱状图的数值信息,默认为True
# period_label-显示时间标签信息,默认为True
# title-图表标题
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, figsize=(5, 3), dpi=100, label_bars=False,
period_label={‘x’: .99, ‘y’: .1, ‘ha’: ‘right’, ‘color’: ‘red’},
title=‘COVID-19 Deaths by Country’)

10 配置标签文字大小

# bar_label_size-柱状图标签文字大小
# tick_label_size-坐标轴标签文字大小
# title_size-标题标签文字大小
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, bar_label_size=4, tick_label_size=5,
title=‘COVID-19 Deaths by Country’, title_size=‘smaller’)

11 全局文字属性

# shared_fontdict-全局字体属性
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, title=‘COVID-19 Deaths by Country’,
shared_fontdict={‘family’: ‘Helvetica’, ‘weight’: ‘bold’,
‘color’: ‘rebeccapurple’})

12 条形图属性,可以设置透明度,边框等

# bar_kwargs-条形图属性
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, bar_kwargs={‘alpha’: .2, ‘ec’: ‘black’, ‘lw’: 3})

13 设置日期标签的时间格式

# 设置日期格式,默认为’%Y-%m-%d’
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, period_fmt=‘%b %-d, %Y’)

14 更改日期标签为数值

# 设置日期标签为数值
bcr.bar_chart_race(df.reset_index(drop=True), ‘covid19_horiz.gif’, interpolate_period=True,
period_fmt=‘Index value - {x:.2f}’)

15 添加动态文本,此处为数值总数统计

# 设置文本位置、数值、大小、颜色等
def summary(values, ranks):
total_deaths = int(round(values.sum(), -2))
s = f’Total Deaths - {total_deaths:,.0f}’
return {‘x’: .99, ‘y’: .05, ‘s’: s, ‘ha’: ‘right’, ‘size’: 8}
# 添加文本
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, period_summary_func=summary)

16 添加垂直条,可选类型有平均值、分位数等

# 设置垂直条数值,分位数
def func(values, ranks):
return values.quantile(.9)
# 添加垂直条
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, perpendicular_bar_func=func)

17 设置柱状图颜色,默认为dark24

# 设置柱状图颜色
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, cmap=‘accent’)

18 柱状图颜色不重复,上面这个图是有重复颜色的

# 去除重复颜色
bcr.bar_chart_race(df, ‘covid19_horiz.gif’, cmap=‘accent’, filter_column_colors=True)

这里有一些要注意的地方,比如中文配置,以及自定义颜色配置

中文配置只需在第三方库的「_make_chart.py」文件中,加入如下三行代码。

#中文显示
plt.rcParams[‘font.sans-serif’] = [‘SimHei’]  #Windows
plt.rcParams[‘font.sans-serif’] = [‘Hiragino Sans GB’] #Mac
plt.rcParams[‘axes.unicode_minus’] = False
现在在图表中加入中文,来看看结果。
import bar_chart_race as bcr
import pandas as pd
# 读取数据
df = pd.read_csv(‘yuhuanshui.csv’, encoding=‘utf-8’, header=0, names=[‘name’, ‘number’, ‘day’])
# 处理数据
df_result = pd.pivot_table(df, values=‘number’, index=[‘day’], columns=[‘name’], fill_value=0)
# print(df_result)
# 生成图像
bcr.bar_chart_race(df_result, ‘heat.gif’, title=‘我是余欢水演职人员热度排行’)

使用电视剧余欢水人物的「百度指数」数据。

文件具体内容如下。

经过数据透视表处理后,得到与该库格式相同的数据。

想用自己的数据来做动态条形图,5行代码****即可搞定

此外通过在「_colormaps.py」文件中添加颜色信息,经cmap引用,即可自定义配置颜色。

colormaps =
{
“new_colors”: [
‘#ff812c’,
‘#ff5a5a’,
‘#00c5d2’,
‘#a64dff’,
‘#4e70f0’,
‘#f95dba’,
‘#ffce2b’

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习


相关文章
|
4天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
7天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
3天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
12 1
|
8天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
4天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
6天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
17 2
|
8天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
算法 Python
<LeetCode天梯>Day039 最大子序和(动态规划) | 初级算法 | Python
<LeetCode天梯>Day039 最大子序和(动态规划) | 初级算法 | Python
<LeetCode天梯>Day039 最大子序和(动态规划) | 初级算法 | Python
|
3天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
3天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!