看爬b站《工作细胞》一万条评论看伙伴们在讨论什么_工作细胞评论

简介: 看爬b站《工作细胞》一万条评论看伙伴们在讨论什么_工作细胞评论

往下滑动,会发现过一段时间,会出现一个fetch,右键打开后发现,里面就是20条记录,有所有我们需要的内容,json格式

所以现在需要做的就是去找这些json文件的路径的规律。多看几条之后,就发现了规律:

第一个json:

**https://bangumi.bilibili.com/review/web_api/short/list?**media_id=102392&folded=0&page_size=20&sort=0

第二个json:

https://bangumi.bilibili.com/review/web_api/short/list?media_id=102392&folded=0&page_size=20&sort=0&cursor=76553500953424

第三个json:

https://bangumi.bilibili.com/review/web_api/short/list?media_id=102392&folded=0&page_size=20&sort=0&cursor=76549205971454

显然所有的json路径的前半部分都是一样,都是在第一条json之后加上不同的cursor = xxxxx,所以只要能找到cursor值的规律,就可以用循环的办法,爬完所有的json,这个值看上去没什么规律,最后发现,每一个json路径中cursor值就藏在前一个json的最后一条评论中

在python中可以直接把json转成字典,cursor值就是最后一条评论中键cursor的值,简直不要太容易。

所以爬的思路就很清晰了,从一个json开始,爬完20条评论后,获取最后一个评论中的cursor值,更改路径之后获取第二个json,重复上面的过程,直到爬完所有的json。

至于如何知道爬完了所有json,也很容易,每个json中一个total键,表示了当前一共有多少条评论,所以只需要写一个while循环,当爬到的评论数达到total值时停止。

爬的过程中还发现,有些json中的评论数不够20条,如果每次用20去定位,中间会报错停止,需要注意一下。所以又加了一行代码,每次获得json后,通过**len()**函数得到当前json中一共包含多少条评论,cursor在最后一个评论中。

以上是整个爬的思路,我们最终爬到以下信息

需要说明的地方,一个是liked按照字面意思应该是用户的点赞数,但爬完才发现全是0,没有用。另一个是关于时间,里面有ctimemtime两个跟时间有关的值,看了几个,基本都是一样的,有个别不太一样,差的不多,就只取了ctime,我猜可能一个是点击进去的时间,一个是评论提交时间,但没法验证,就随便取一个算了,ctime的编码很奇怪,比如某一个是ctime = 1540001677,渣渣之前没有见过这种编码方式,请教了大佬之后知道,这个是Linux系统上的时间表示方式,是1970年1月1日0时0分0秒到当时时点的秒数,python中可以直接用time.gmtime()函数转化成年月日小时分钟秒的格式。还有last_ep_index里面存的是用户当前的看剧状态,比如看至第13话,第6话之类的,但后来发现很不准,绝大多数用户没有last_ep_index值,所以也没有分析这个变量。

代码如下

1import requests
 2from fake_useragent import UserAgent
 3import json
 4import pandas as pd
 5import time
 6import datetime
 7headers = { "User-Agent": UserAgent(verify_ssl=False).random}
 8comment_api = 'https://bangumi.bilibili.com/review/web_api/short/list?media_id=102392&folded=0&page_size=20&sort=0'
 9
10# 发送get请求
11response_comment = requests.get(comment_api,headers = headers)
12json_comment = response_comment.text
13json_comment = json.loads(json_comment)
14
15total = json_comment['result']['total']
16
17cols = ['author','score','disliked','likes','liked','ctime','score','content','last_ep_index','cursor']
18dataall = pd.DataFrame(index = range(total),columns = cols)
19
20
21j = 0
22while j <total:
23    n = len(json_comment['result']['list'])
24    for i in range(n):
25        dataall.loc[j,'author'] = json_comment['result']['list'][i]['author']['uname']
26        dataall.loc[j,'score'] = json_comment['result']['list'][i]['user_rating']['score']
27        dataall.loc[j,'disliked'] = json_comment['result']['list'][i]['disliked']
28        dataall.loc[j,'likes'] = json_comment['result']['list'][i]['likes']
29        dataall.loc[j,'liked'] = json_comment['result']['list'][i]['liked']
30        dataall.loc[j,'ctime'] = json_comment['result']['list'][i]['ctime']
31        dataall.loc[j,'content'] = json_comment['result']['list'][i]['content']
32        dataall.loc[j,'cursor'] = json_comment['result']['list'][n-1]['cursor'] 
33        j+= 1
34    try:        
35        dataall.loc[j,'last_ep_index'] = json_comment['result']['list'][i]['user_season']['last_ep_index']
36    except:
37        pass
38
39    comment_api1 = comment_api + '&cursor=' + dataall.loc[j-1,'cursor'] 
40    response_comment = requests.get(comment_api1,headers = headers)
41    json_comment = response_comment.text
42    json_comment = json.loads(json_comment)
43
44    if j % 50 ==0:
45        print('已完成 {}% !'.format(round(j/total*100,2)))
46    time.sleep(0.5)
47
48
49
50dataall = dataall.fillna(0)
51
52def getDate(x):
53    x = time.gmtime(x)
54    return(pd.Timestamp(datetime.datetime(x[0],x[1],x[2],x[3],x[4],x[5])))
55
56dataall['date'] = dataall.ctime.apply(lambda x:getDate(x))
57
58dataall.to_csv('bilibilib_gongzuoxibao.xlsx',index = False)

03 影评分析

最终一共爬到了17398条影评数据。里面的date是用ctime转过来的,接下来对数据进行一些分析,数据分析通过python3.6完成,代码见文末。

评分分布

评分取值范围为2、4、6、8、10分,对应1-5颗星

可以看出,几乎所有的用户都给了这部动漫五星好评,影响力可见一斑。

评分时间分布

将这部动漫从上线至今所有的评分按日进行平均,观察评分随时间的变化情况

可以看出,评分一直居高不下,尤其起始和结束时都接近满分,足见这是一部良好开端、圆满结束的良心作品。

每日评论数

看完评分之后,再看看评论相关的数据,我最感兴趣的是,这些评论的时间分布是怎么样的,统计了每一日的评论数之后,得到了评论数的分布图

基本上是每出了新的一话,大家看完后就会在短评中分享自己的感受,当然同样是起始和结束阶段的评论数最多,对比同期的百度指数

评论日内分布

除了每日的评论数,也想分析一下评论的日内趋势,用户都喜欢在每日的什么时间进行评论?将评论分24个小时求和汇总后,得到了下图

不过这个结果就不是很理想了,横轴是时间,纵轴是评论数,中午到下午的趋势上升可以理解,晚上七八点没有人评论反倒是凌晨三四点评论数最多,这个就很反常了,可能是评论在系统中上线的时间有一定偏差?

好评字数

此外还想分析一下,是否点赞数多的,一定是写的字数越多的?因为文章中大部分的评论是没有点赞的,所以这里中统计了有点赞(likes>0)的评论点赞数和评论字数的数据。由于有一条评论字点赞数太多,严重偏离整体趋势,所以做了对数图进行观察。

整体来看,似乎没什么关系,大量字数1-100不等的,点赞数都为1,点赞数大于5的部分有一定的正相关性,说明评论不仅要看数量,还要看质量,写出了大家的心声,大家才会使劲点赞。

评论分析TF-IDF

分析完基础数据后,想更深入挖掘一下评论信息,大家都说了些什么?为什么这部剧这么受欢迎?也许都能在评论中找到答案。

jieba分词、去除停止词、计算词频和TF-IDF的过程不表,与之前两篇文章类似。我们提取了重要性前500的词,这里展示部分

血小板高居首位,毕竟大家对萌萌哒事物都是没什么抵抗力的。

词语中也存在一些意义不大的词,前期处理不太到位。不过从这些词云中还是可以看出很多东西,为什么这部剧如此受欢迎?这里通过分词可以得到以下三个解释:

1. 题材好:科普类动漫,老少皆宜

评论中提到了科普、生物、题材等词,还有各种细胞。区别于一般科普向动漫受众低幼的问题,这部番的受众年龄比较广泛。因为所涉及到的知识并不算过于常识。动漫中,每一话,身体的主人都会生一场病,每次出现新的细胞和病毒出现时,都会对他们的身份有比较详细和准确的介绍

这种形式寓教于乐,同时战斗的过程也充分地体现了每种细胞的特性。例如,前期因为战斗力弱而被别的细胞瞧不起的嗜酸性粒细胞,在遇到寄生虫的时候大放异彩。可以说,每一种细胞爆种都爆得都有理有据。

2. 人设好

这部番把几乎人体所有的细胞拟人化:红细胞、白细胞、血小板、巨噬细胞等。每一种细胞都有比较独特的设定,从御姐到萝莉,从高冷到话痨。十几个出场的主要人物都各自有立得住的萌点。满足各种口味的需求。

3. 制作精良

这一点是毋庸置疑的,好的人设好的题材,如果没有好的制作,都是白谈,评论中也有很多人提到了“声优”、“配音”等。

现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。

分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习


相关文章
|
2月前
|
数据采集 机器人 计算机视觉
一手训练,多手应用:国防科大提出灵巧手抓取策略迁移新方案
【10月更文挑战第24天】国防科技大学研究人员提出了一种新颖的机器人抓取方法,通过学习统一的策略模型,实现不同灵巧夹具之间的策略迁移。该方法分为两个阶段:与夹具无关的策略模型预测关键点位移,与夹具相关的适配模型将位移转换为关节调整。实验结果显示,该方法在抓取成功率、稳定性和速度方面显著优于基线方法。论文地址:https://arxiv.org/abs/2404.09150
39 1
|
6月前
|
测试技术
ACL 2024:大模型性能掺水严重?北大交出答卷:交互评估+动态出题,死记硬背也没用
【7月更文挑战第8天】北大研究团队推出KIEval框架,针对大语言模型(LLMs)的性能评估进行创新。KIEval采用互动评估和动态出题,通过多轮基于知识的对话测试模型理解和应用能力,旨在减少数据污染影响,挑战死记硬背的评估。然而,该方法可能增加计算需求,且评估结果可能受主观因素影响,不适用于所有类型LLMs。[论文链接:](https://arxiv.org/abs/2402.15043)**
110 24
|
5月前
|
搜索推荐 知识图谱 UED
信息检索新技术问题之回音室效应的定义如何解决
信息检索新技术问题之回音室效应的定义如何解决
44 0
|
5月前
|
域名解析 存储 缓存
破解 DNS 缓存的秘密:一个简单实验揭示定时刷新背后的惊人真相!
【8月更文挑战第27天】本文介绍DNS缓存管理的重要性及其实现方法。DNS缓存用于快速响应重复的域名解析请求,但因IP地址变动需定期刷新以确保信息准确。文章提供一个基于Python的示例脚本,模拟DNS缓存刷新过程,包括添加、查询记录以及清除过期项等功能。尽管实际环境中这些任务常由专业DNS服务软件自动处理,但该示例有助于理解DNS缓存的工作机制及其维护策略。
98 0
|
Cloud Native 容灾 程序员
三点“揭露”内向技术人如何做好分享?
希望本文能帮助所有内向者发现自身的优势,实现由内而外的成长。
795 22
三点“揭露”内向技术人如何做好分享?
|
机器学习/深度学习 人工智能 自然语言处理
扩散模型背后数学太难了,啃不动?谷歌用统一视角讲明白了
扩散模型背后数学太难了,啃不动?谷歌用统一视角讲明白了
258 0
|
人工智能 搜索推荐 开发者
即将发布的2021年度「Pop SOTA!」名录是否漏了贵组的重要工作?速来查缺补漏~
即将发布的2021年度「Pop SOTA!」名录是否漏了贵组的重要工作?速来查缺补漏~
129 0
即将发布的2021年度「Pop SOTA!」名录是否漏了贵组的重要工作?速来查缺补漏~
|
设计模式 IDE Java
每一个疑问背后都隐藏着至少一个盲点和学习的绝佳机会
每一个疑问背后都隐藏着至少一个盲点和学习的绝佳机会
198 0
国外隔离迷惑行为:这个网站帮你复现办公室白噪音,还能自行决定同事数量
国外隔离迷惑行为:这个网站帮你复现办公室白噪音,还能自行决定同事数量
161 0

热门文章

最新文章

下一篇
开通oss服务