实时计算 Flink版产品使用合集之idea本地测试代码,要增大 Flink CDC 在本地 IDEA 测试环境中的内存大小如何解决

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:请问下Flink CDC:oracle-cdc有没有类似于mysql里面的 配置呢?


请问下Flink CDC:oracle-cdc有没有类似于mysql里面的 scanNewlyAddedTableEnabled(true)的配置呢?


参考回答:

没有,oracle cdc 还不支持,技术上没问题,还没来得及排期


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567018


问题二:Flink CDC mysql truncate操作订阅不到 这个有办法处理吗?


Flink CDC mysql truncate操作订阅不到 这个有办法处理吗?


参考回答:

delete,没有办法这个。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567015


问题三:Flink CDC 过来之后是乱码的字符串是什么原因呢?


Flink CDC SQL server表中字段类型是numeric(12,2),cdc过来之后是乱码的字符串是什么原因呢?


参考回答:

Flink CDC (Change Data Capture) 是一种用于捕获数据库表变化的数据抽取技术。当从SQL Server表中进行CDC时,如果表中的字段类型是numeric(12,2),但是CD到Flink后变成了乱码的字符串,这可能是因为Flink CDC在处理numeric类型数据时出现了一些问题。

以下是一些可能的原因和解决方法:

  1. Flink CDC插件版本问题:检查你的Flink CDC插件版本是否与你的Flink版本和SQL Server版本兼容。如果不兼容,可能需要升级Flink CDC插件或者降级你的SQL Server版本。
  2. 数据映射问题:在Flink CDC中,数据类型需要在源数据库和目标表之间进行映射。检查你的数据映射配置是否正确,特别是对于numeric类型的字段。
  3. 数据编码问题:检查你的Flink任务是否在处理数据时使用了错误的字符编码。你应该确保你的Flink任务使用的字符编码与你的SQL Server数据库一致。
  4. 数据转换问题:在Flink CDC中,数据类型转换可能会丢失精度。如果你的numeric类型字段在CD到Flink后变成了乱码的字符串,可能是因为在数据转换过程中丢失了精度。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567014


问题四:Flink CDC我idea本地测试代码,通过这个参数设置的没有效果,有知道啥问题吗?


Flink CDC我idea本地测试代码,想把state用的内存设置大一点,taskmanager.memory.managed.size: 2048m,通过这个参数设置的没有效果,有大佬知道啥问题吗?


参考回答:


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567012


问题五:Flink CDC还是有delete读取到了怎么办?


Flink CDC还是有delete读取到了怎么办?


参考回答:

ds,这里好像是不需要dezezium前缀吧,ds的构造器上已经明确是 .debeziumProperties()了


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/567007

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
3月前
|
安全 Java 应用服务中间件
Spring Boot + Java 21:内存减少 60%,启动速度提高 30% — 零代码
通过调整三个JVM和Spring Boot配置开关,无需重写代码即可显著优化Java应用性能:内存减少60%,启动速度提升30%。适用于所有在JVM上运行API的生产团队,低成本实现高效能。
296 3
|
3月前
|
存储 大数据 Unix
Python生成器 vs 迭代器:从内存到代码的深度解析
在Python中,处理大数据或无限序列时,迭代器与生成器可避免内存溢出。迭代器通过`__iter__`和`__next__`手动实现,控制灵活;生成器用`yield`自动实现,代码简洁、内存高效。生成器适合大文件读取、惰性计算等场景,是性能优化的关键工具。
241 2
|
4月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
482 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
538 56
|
11月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 在阿里云实时计算Flink版的云上实践
本文整理自阿里云高级开发工程师阮航在Flink Forward Asia 2024的分享,重点介绍了Flink CDC与实时计算Flink的集成、CDC YAML的核心功能及应用场景。主要内容包括:Flink CDC的发展及其在流批数据处理中的作用;CDC YAML支持的同步链路、Transform和Route功能、丰富的监控指标;典型应用场景如整库同步、Binlog原始数据同步、分库分表同步等;并通过两个Demo展示了MySQL整库同步到Paimon和Binlog同步到Kafka的过程。最后,介绍了未来规划,如脏数据处理、数据限流及扩展数据源支持。
674 0
Flink CDC 在阿里云实时计算Flink版的云上实践
|
12月前
|
存储 关系型数据库 BI
实时计算UniFlow:Flink+Paimon构建流批一体实时湖仓
实时计算架构中,传统湖仓架构在数据流量管控和应用场景支持上表现良好,但在实际运营中常忽略细节,导致新问题。为解决这些问题,提出了流批一体的实时计算湖仓架构——UniFlow。该架构通过统一的流批计算引擎、存储格式(如Paimon)和Flink CDC工具,简化开发流程,降低成本,并确保数据一致性和实时性。UniFlow还引入了Flink Materialized Table,实现了声明式ETL,优化了调度和执行模式,使用户能灵活调整新鲜度与成本。最终,UniFlow不仅提高了开发和运维效率,还提供了更实时的数据支持,满足业务决策需求。
|
存储 算法 Java
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
281 5
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
423 1
|
缓存 Ubuntu Linux
Linux环境下测试服务器的DDR5内存性能
通过使用 `memtester`和 `sysbench`等工具,可以有效地测试Linux环境下服务器的DDR5内存性能。这些工具不仅可以评估内存的读写速度,还可以检测内存中的潜在问题,帮助确保系统的稳定性和性能。通过合理配置和使用这些工具,系统管理员可以深入了解服务器内存的性能状况,为系统优化提供数据支持。
896 4

相关产品

  • 实时计算 Flink版