实时计算 Flink版产品使用合集之使用ParameterTool.fromArgs(args)解析参数为null,该怎么处理

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。

问题一:Flink朴素贝叶斯 这里 是不是有问题呀?


Flink朴素贝叶斯 这里 是不是有问题呀?


参考回答:

看起来这段代码是从一个流中反序列化出一些数据,然后构建出一个NaiveBayes模型。这里的serializermapSerializerinputViewStreamlwrapper可能是自定义的类或者对象,用于进行数据的序列化和反序列化。

这段代码的主要逻辑是:首先从输入流中读取特征的数量(featureSize)和标签的数量(numLabels),然后创建一个二维数组theta,用于存储每个特征在每个标签下的概率。接着,使用mapSerializer从输入流中反序列化出每个标签下的概率,并将其存储到theta数组中。最后,返回一个包含所有反序列化数据的NaiveBayes模型。

如果你在运行这段代码时遇到了问题,可能需要查看相关的类和对象的定义,以及它们如何进行数据的序列化和反序列化。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568559


问题二:Flink 这个为什么执行这么慢呢?


Flink 这个为什么执行这么慢呢?


参考回答:

针对你提到的问题,首先需要明确的是,Flink是一个用于流处理和批处理的开源平台,它提供了SQL API来简化数据处理任务。而你遇到的问题似乎是由于Flink SQL查询执行速度慢并且出现了java.util.concurrent.TimeoutException异常。

以下是一些可能导致这个问题的原因以及相应的解决方案:

  1. 数据量过大:如果你的数据量非常大,查询可能需要更长的时间来处理。在这种情况下,你可以考虑对数据进行分页查询或者过滤,以减少查询的数据量。例如,你可以使用SELECT * FROM ods_t_sale_order_tmp_test WHERE column1 = value1 LIMIT 100的方式来获取部分数据。
  2. 数据倾斜:在Flink中,如果数据在多个并行任务之间分布不均匀,可能会导致某些任务执行时间过长,从而导致超时异常。你可以检查是否存在这种情况,并相应地调整并行度或者优化数据分布。
  3. 系统资源不足:如果Flink集群的资源不足(例如CPU、内存、网络带宽等),可能会导致查询执行速度慢或者出现异常。你可以检查集群的资源使用情况,并根据需要进行调整。
  4. SQL查询优化:对于复杂的SQL查询,可能需要进行优化以提高执行效率。你可以考虑使用Flink提供的查询优化功能或者使用执行计划来分析查询的性能瓶颈。
  5. 异常处理:针对出现的java.util.concurrent.TimeoutException异常,你可以在Flink的配置中增加超时时间,以允许查询有更多的时间来执行。

综上所述,要解决Flink SQL查询执行慢的问题,需要结合实际情况进行排查和优化。以上提到的方案可以作为参考,但具体的解决方案可能需要根据你实际的数据、系统资源以及查询需求进行调整。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568558


问题三:我想把resultStream 分别存入hbase和Redis, 为啥flink的流程图是串行的?


请教一下我想把resultStream 分别存入hbase和Redis, 为啥flink的流程图是串行的, 不是并行的?效果也不是我理解的那样


参考回答:

中间那个 合成算子链了吧 所以放在一起展示 ,用disableChaining可以断开 。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568556


问题四:ParameterTool.fromArgs(args)Flink解析参数为null的情况怎么处理?


ParameterTool.fromArgs(args);Flink解析参数为null的情况怎么处理?


参考回答:

如果 ParameterTool 参数为空,则说明您未正确指定参数。请尝试以下步骤:

  1. 使用正确的参数格式

Parameter Tool 参数应该是逗号分隔的一组键值对。例如:-Dkey=value

  1. 使用正确的命令行选项

如果您使用命令行参数,则需要加上 -D 参数前缀。例如:

ParameterTool parameterTool = ParameterTool.fromArgs("-Dkey=value");
  1. 检查源码中的参数是否正确

检查您的代码中是否存在错误的参数名称或缺失的参数值。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568555


问题五:在Flink使用sqlclient去传输数据的时,为啥checkpoint显示完成但是大小是0b?


在Flink使用sqlclient去传输数据的时候 为啥checkpoint的显示完成但是大小是0b啊?


参考回答:

这可能是由于以下原因之一导致的:

  1. 没有启用checkpoint。请确保您已正确配置Flink作业以启用checkpoint,并且checkpoint间隔时间已设置。
  2. 检查点太小。如果您的检查点太小,则可能无法捕获到足够的数据来生成有意义的输出。尝试增加检查点的大小。
  3. 数据未被正确写入检查点。请确保您的数据源和接收器已正确配置,并且数据已成功写入检查点。
  4. 网络问题。如果您的网络连接不稳定或速度较慢,则可能会导致检查点传输失败或延迟。请确保您的网络连接稳定并具有足够的带宽来支持检查点传输。


关于本问题的更多回答可点击原文查看:https://developer.aliyun.com/ask/568554



相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之从MySQL同步数据到Doris时,历史数据时间字段显示为null,而增量数据部分的时间类型字段正常显示的原因是什么
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
7月前
|
消息中间件 SQL 关系型数据库
实时计算 Flink版操作报错之错误提示“null column 15 Encountered at line 43”如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
4月前
|
SQL 数据采集 存储
NULL 值与零或空格相同吗?详尽解析
【8月更文挑战第31天】
392 0
|
6月前
|
SQL 关系型数据库 MySQL
MySQL外键约束行为解析:CASCADE, NO ACTION, RESTRICT, SET NULL
MySQL外键约束行为解析:CASCADE, NO ACTION, RESTRICT, SET NULL
501 0
|
7月前
|
消息中间件 SQL 关系型数据库
实时计算 Flink版产品使用合集之出现了null值,如何过滤
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
74 2
|
2月前
|
缓存 Java 程序员
Map - LinkedHashSet&Map源码解析
Map - LinkedHashSet&Map源码解析
78 0
|
2月前
|
算法 Java 容器
Map - HashSet & HashMap 源码解析
Map - HashSet & HashMap 源码解析
63 0
|
2月前
|
存储 Java C++
Collection-PriorityQueue源码解析
Collection-PriorityQueue源码解析
66 0
|
2月前
|
安全 Java 程序员
Collection-Stack&Queue源码解析
Collection-Stack&Queue源码解析
87 0

相关产品

  • 实时计算 Flink版
  • 推荐镜像

    更多