Pandas 2.2 中文官方教程和指南(七)(1)https://developer.aliyun.com/article/1509747
缺失数据
对于 NumPy 数据类型,np.nan
表示缺失数据。默认情况下不包括在计算中。请参阅缺失数据部分。
重新索引允许您在指定轴上更改/添加/删除索引。这将返回数据的副本:
In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"]) In [56]: df1.loc[dates[0] : dates[1], "E"] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 NaN
DataFrame.dropna()
删除任何具有缺失数据的行:
In [58]: df1.dropna(how="any") Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
DataFrame.fillna()
填充缺失数据:
In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5.0 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 5.0
isna()
获取值为nan
的布尔掩码:
In [60]: pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
操作
在二进制运算基础部分查看更多。
统计
一般操作排除缺失数据。
计算每列的平均值:
In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64
计算每行的平均值:
In [62]: df.mean(axis=1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64
与具有不同索引或列的另一个Series
或DataFrame
进行操作将使结果与索引或列标签的并集对齐。此外,pandas 会沿指定维度自动广播,并将未对齐的标签填充为np.nan
。
In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis="index") Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN
用户定义的函数
DataFrame.agg()
和DataFrame.transform()
应用一个用户定义的函数,分别减少或广播其结果。
In [66]: df.agg(lambda x: np.mean(x) * 5.6) Out[66]: A -0.025054 B -2.150294 C -3.851445 D 28.000000 F 16.800000 dtype: float64 In [67]: df.transform(lambda x: x * 101.2) Out[67]: A B C D F 2013-01-01 0.000000 0.000000 -152.716721 506.0 NaN 2013-01-02 122.665737 -17.529322 12.063922 506.0 101.2 2013-01-03 -87.219115 -212.982405 -50.086843 506.0 202.4 2013-01-04 73.021382 -71.525239 -105.204988 506.0 303.6 2013-01-05 -43.007200 57.382459 27.954680 506.0 404.8 2013-01-06 -68.177398 11.501219 -149.616767 506.0 506.0
值计数
在直方图和离散化中查看更多。
In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 2 2 6 2 1 1 Name: count, dtype: int64
字符串方法
Series
配备了一组字符串处理方法,位于str
属性中,使得可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。更多信息请参阅矢量化字符串方法。
In [71]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"]) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
合并
连接
pandas 提供了各种便捷的功能,可以轻松地将Series
和DataFrame
对象结合在一起,对索引进行各种类型的集合逻辑操作,并在联接/合并类型操作中提供关系代数功能。
查看合并部分。
使用concat()
将 pandas 对象沿行连接在一起:
In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
注意
向DataFrame
添加列相对较快。但是,添加行需要复制,可能会很昂贵。我们建议将预先构建的记录列表传递给DataFrame
构造函数,而不是通过迭代附加记录来构建DataFrame
。
连接
merge()
可以在特定列上启用 SQL 风格的连接类型。请参阅数据库风格连接部分。
In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]}) In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on="key") Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
在唯一键上进行merge()
:
In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]}) In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on="key") Out[86]: key lval rval 0 foo 1 4 1 bar 2 5
分组
通过“分组”我们指的是涉及以下一个或多个步骤的过程:
- 根据某些标准将数据分组
- 对每个组独立应用函数
- 将结果组合成数据结构
查看分组部分。
In [87]: df = pd.DataFrame( ....: { ....: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ....: "B": ["one", "one", "two", "three", "two", "two", "one", "three"], ....: "C": np.random.randn(8), ....: "D": np.random.randn(8), ....: } ....: ) ....: In [88]: df Out[88]: A B C D 0 foo one 1.346061 -1.577585 1 bar one 1.511763 0.396823 2 foo two 1.627081 -0.105381 3 bar three -0.990582 -0.532532 4 foo two -0.441652 1.453749 5 bar two 1.211526 1.208843 6 foo one 0.268520 -0.080952 7 foo three 0.024580 -0.264610
按列标签分组,选择列标签,然后对结果组应用DataFrameGroupBy.sum()
函数:
In [89]: df.groupby("A")[["C", "D"]].sum() Out[89]: C D A bar 1.732707 1.073134 foo 2.824590 -0.574779
按多个列标签形式进行分组形成MultiIndex
。
In [90]: df.groupby(["A", "B"]).sum() Out[90]: C D A B bar one 1.511763 0.396823 three -0.990582 -0.532532 two 1.211526 1.208843 foo one 1.614581 -1.658537 three 0.024580 -0.264610 two 1.185429 1.348368
重塑
请参阅分层索引和重塑部分。
堆叠
In [91]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....: In [92]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"]) In [93]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"]) In [94]: df2 = df[:4] In [95]: df2 Out[95]: A B first second bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431
stack()
方法在 DataFrame 的列中“压缩”了一个级别:
In [96]: stacked = df2.stack(future_stack=True) In [97]: stacked Out[97]: first second bar one A -0.727965 B -0.589346 two A 0.339969 B -0.693205 baz one A -0.339355 B 0.593616 two A 0.884345 B 1.591431 dtype: float64
对于具有MultiIndex
作为index
的“堆叠”DataFrame 或 Series,stack()
的逆操作是unstack()
,默认情况下取消堆叠最后一级:
In [98]: stacked.unstack() Out[98]: A B first second bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431 In [99]: stacked.unstack(1) Out[99]: second one two first bar A -0.727965 0.339969 B -0.589346 -0.693205 baz A -0.339355 0.884345 B 0.593616 1.591431 In [100]: stacked.unstack(0) Out[100]: first bar baz second one A -0.727965 -0.339355 B -0.589346 0.593616 two A 0.339969 0.884345 B -0.693205 1.591431
透视表
查看透视表部分。
In [101]: df = pd.DataFrame( .....: { .....: "A": ["one", "one", "two", "three"] * 3, .....: "B": ["A", "B", "C"] * 4, .....: "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2, .....: "D": np.random.randn(12), .....: "E": np.random.randn(12), .....: } .....: ) .....: In [102]: df Out[102]: A B C D E 0 one A foo -1.202872 0.047609 1 one B foo -1.814470 -0.136473 2 two C foo 1.018601 -0.561757 3 three A bar -0.595447 -1.623033 4 one B bar 1.395433 0.029399 5 one C bar -0.392670 -0.542108 6 two A foo 0.007207 0.282696 7 three B foo 1.928123 -0.087302 8 one C foo -0.055224 -1.575170 9 one A bar 2.395985 1.771208 10 two B bar 1.552825 0.816482 11 three C bar 0.166599 1.100230
pivot_table()
透视一个指定values
、index
和columns
的DataFrame
In [103]: pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"]) Out[103]: C bar foo A B one A 2.395985 -1.202872 B 1.395433 -1.814470 C -0.392670 -0.055224 three A -0.595447 NaN B NaN 1.928123 C 0.166599 NaN two A NaN 0.007207 B 1.552825 NaN C NaN 1.018601
时间序列
pandas 具有简单、强大和高效的功能,用于在频率转换期间执行重新采样操作(例如,将秒数据转换为 5 分钟数据)。这在金融应用中非常常见,但不限于此。请参阅时间序列部分。
In [104]: rng = pd.date_range("1/1/2012", periods=100, freq="s") In [105]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [106]: ts.resample("5Min").sum() Out[106]: 2012-01-01 24182 Freq: 5min, dtype: int64
Series.tz_localize()
将一个时间序列本地化到一个时区:
In [107]: rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D") In [108]: ts = pd.Series(np.random.randn(len(rng)), rng) In [109]: ts Out[109]: 2012-03-06 1.857704 2012-03-07 -1.193545 2012-03-08 0.677510 2012-03-09 -0.153931 2012-03-10 0.520091 Freq: D, dtype: float64 In [110]: ts_utc = ts.tz_localize("UTC") In [111]: ts_utc Out[111]: 2012-03-06 00:00:00+00:00 1.857704 2012-03-07 00:00:00+00:00 -1.193545 2012-03-08 00:00:00+00:00 0.677510 2012-03-09 00:00:00+00:00 -0.153931 2012-03-10 00:00:00+00:00 0.520091 Freq: D, dtype: float64
Series.tz_convert()
将一个时区感知的时间序列转换到另一个时区:
In [112]: ts_utc.tz_convert("US/Eastern") Out[112]: 2012-03-05 19:00:00-05:00 1.857704 2012-03-06 19:00:00-05:00 -1.193545 2012-03-07 19:00:00-05:00 0.677510 2012-03-08 19:00:00-05:00 -0.153931 2012-03-09 19:00:00-05:00 0.520091 Freq: D, dtype: float64
向时间序列添加非固定持续时间(BusinessDay
):
In [113]: rng Out[113]: DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09', '2012-03-10'], dtype='datetime64[ns]', freq='D') In [114]: rng + pd.offsets.BusinessDay(5) Out[114]: DatetimeIndex(['2012-03-13', '2012-03-14', '2012-03-15', '2012-03-16', '2012-03-16'], dtype='datetime64[ns]', freq=None)
分类数据
pandas 可以在DataFrame
中包含分类数���。有关完整文档,请参阅分类介绍和 API 文档。
In [115]: df = pd.DataFrame( .....: {"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]} .....: ) .....:
将原始成绩转换为分类数据类型:
In [116]: df["grade"] = df["raw_grade"].astype("category") In [117]: df["grade"] Out[117]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): ['a', 'b', 'e']
将类别重命名为更有意义的名称:
In [118]: new_categories = ["very good", "good", "very bad"] In [119]: df["grade"] = df["grade"].cat.rename_categories(new_categories)
重新排序类别并同时添加缺失的类别(Series.cat()
下的方法默认返回一个新的Series
):
In [120]: df["grade"] = df["grade"].cat.set_categories( .....: ["very bad", "bad", "medium", "good", "very good"] .....: ) .....: In [121]: df["grade"] Out[121]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
排序按照类别中的顺序,而不是词法顺序:
In [122]: df.sort_values(by="grade") Out[122]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
通过具有observed=False
的分类列进行分组也会显示空类别:
In [123]: df.groupby("grade", observed=False).size() Out[123]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
绘图
查看绘图文档。
我们使用标准约定来引用 matplotlib API:
In [124]: import matplotlib.pyplot as plt In [125]: plt.close("all")
使用 plt.close
方法来关闭一个图形窗口:
In [126]: ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) In [127]: ts = ts.cumsum() In [128]: ts.plot();
注意
在 Jupyter 中使用plot()
绘制图表。否则使用matplotlib.pyplot.show显示图表,或者使用matplotlib.pyplot.savefig将图表写入文件。
plot()
绘制所有列:
In [129]: df = pd.DataFrame( .....: np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"] .....: ) .....: In [130]: df = df.cumsum() In [131]: plt.figure(); In [132]: df.plot(); In [133]: plt.legend(loc='best');
导入和导出数据
查看 IO 工具部分。
CSV
写入 csv 文件:使用DataFrame.to_csv()
In [134]: df = pd.DataFrame(np.random.randint(0, 5, (10, 5))) In [135]: df.to_csv("foo.csv")
从 csv 文件中读取:使用read_csv()
In [136]: pd.read_csv("foo.csv") Out[136]: Unnamed: 0 0 1 2 3 4 0 0 4 3 1 1 2 1 1 1 0 2 3 2 2 2 1 4 2 1 2 3 3 0 4 0 2 2 4 4 4 2 2 3 4 5 5 4 0 4 3 1 6 6 2 1 2 0 3 7 7 4 0 4 4 4 8 8 4 4 1 0 1 9 9 0 4 3 0 3
Parquet
写入 Parquet 文件:
In [137]: df.to_parquet("foo.parquet")
使用read_parquet()
从 Parquet 文件存储中读取:
In [138]: pd.read_parquet("foo.parquet") Out[138]: 0 1 2 3 4 0 4 3 1 1 2 1 1 0 2 3 2 2 1 4 2 1 2 3 0 4 0 2 2 4 4 2 2 3 4 5 4 0 4 3 1 6 2 1 2 0 3 7 4 0 4 4 4 8 4 4 1 0 1 9 0 4 3 0 3
Excel
读取和写入 Excel。
使用DataFrame.to_excel()
将数据写入 excel 文件:
In [139]: df.to_excel("foo.xlsx", sheet_name="Sheet1")
使用read_excel()
���excel 文件中读取:
In [140]: pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"]) Out[140]: Unnamed: 0 0 1 2 3 4 0 0 4 3 1 1 2 1 1 1 0 2 3 2 2 2 1 4 2 1 2 3 3 0 4 0 2 2 4 4 4 2 2 3 4 5 5 4 0 4 3 1 6 6 2 1 2 0 3 7 7 4 0 4 4 4 8 8 4 4 1 0 1 9 9 0 4 3 0 3
注意事项
如果您尝试在Series
或DataFrame
上执行布尔操作,可能会看到异常,如:
In [141]: if pd.Series([False, True, False]): .....: print("I was true") .....: --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-141-b27eb9c1dfc0> in ?() ----> 1 if pd.Series([False, True, False]): 2 print("I was true") ~/work/pandas/pandas/pandas/core/generic.py in ?(self) 1575 @final 1576 def __nonzero__(self) -> NoReturn: -> 1577 raise ValueError( 1578 f"The truth value of a {type(self).__name__} is ambiguous. " 1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()." 1580 ) ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
查看比较和注意事项以获取解释和处理方法。
Pandas 中的基本数据结构
Pandas 提供了两种处理数据的类:
Series
:一个持有任何类型数据的一维标记数组
例如整数、字符串、Python 对象等。DataFrame
:一个二维数据结构,类似于二维数组或具有行和列的表格。
对象创建
查看数据结构简介部分。
通过传递值列表创建Series
,让 pandas 创建默认的RangeIndex
。
In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
通过使用date_range()
和标记列,通过传递具有日期时间索引的 NumPy 数组创建DataFrame
:
In [5]: dates = pd.date_range("20130101", periods=6) In [6]: dates Out[6]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD")) In [8]: df Out[8]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
通过传递一个字典对象创建一个DataFrame
,其中键是列标签,值是列值。
In [9]: df2 = pd.DataFrame( ...: { ...: "A": 1.0, ...: "B": pd.Timestamp("20130102"), ...: "C": pd.Series(1, index=list(range(4)), dtype="float32"), ...: "D": np.array([3] * 4, dtype="int32"), ...: "E": pd.Categorical(["test", "train", "test", "train"]), ...: "F": "foo", ...: } ...: ) ...: In [10]: df2 Out[10]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo
结果DataFrame
的列具有不同的 dtypes:
In [11]: df2.dtypes Out[11]: A float64 B datetime64[s] C float32 D int32 E category F object dtype: object
如果你正在使用 IPython,列名(以及公共属性)的制表符自动完成功能已经启用。以下是将被自动完成的属性的子集:
In [12]: df2.<TAB> # noqa: E225, E999 df2.A df2.bool df2.abs df2.boxplot df2.add df2.C df2.add_prefix df2.clip df2.add_suffix df2.columns df2.align df2.copy df2.all df2.count df2.any df2.combine df2.append df2.D df2.apply df2.describe df2.applymap df2.diff df2.B df2.duplicated
正如你所看到的,列A
、B
、C
和D
已经自动完成。E
和F
也在其中;其余属性由于简洁起见已被截断。
查看数据
查看基本功能部分。
使用DataFrame.head()
和DataFrame.tail()
分别查看框架的顶部和底部行:
In [13]: df.head() Out[13]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3) Out[14]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示DataFrame.index
或DataFrame.columns
:
In [15]: df.index Out[15]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [16]: df.columns Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
使用DataFrame.to_numpy()
返回底层数据的 NumPy 表示,不包括索引或列标签:
In [17]: df.to_numpy() Out[17]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])
注意
NumPy 数组整个数组只有一个 dtype,而 pandas DataFrames 每列有一个 dtype。当你调用DataFrame.to_numpy()
时,pandas 会找到可以容纳 DataFrame 中所有dtypes 的 NumPy dtype。如果通用数据类型是object
,DataFrame.to_numpy()
将需要复制数据。
In [18]: df2.dtypes Out[18]: A float64 B datetime64[s] C float32 D int32 E category F object dtype: object In [19]: df2.to_numpy() Out[19]: array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
describe()
显示数据的快速统计摘要:
In [20]: df.describe() Out[20]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804
转置你的数据:
In [21]: df.T Out[21]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
DataFrame.sort_index()
按轴排序:
In [22]: df.sort_index(axis=1, ascending=False) Out[22]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
DataFrame.sort_values()
按值排序:
In [23]: df.sort_values(by="B") Out[23]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
Pandas 2.2 中文官方教程和指南(七)(3)https://developer.aliyun.com/article/1509749