文章描述
- 数据分析:查看变量间相关性以及找出关键变量。
机器学习实战 —— 工业蒸汽量预测(一) - 数据特征工程对数据精进:异常值处理、归一化处理以及特征降维。
机器学习实战 —— 工业蒸汽量预测(二) - 模型训练(涉及主流ML模型):决策树、随机森林,lightgbm等。
机器学习实战 —— 工业蒸汽量预测(三) - 模型验证:评估指标以及交叉验证等。
机器学习实战 —— 工业蒸汽量预测(四) - 特征优化:用lgb对特征进行优化。
机器学习实战 —— 工业蒸汽量预测(五) - 模型融合:进行基于stacking方式模型融合。
机器学习实战 —— 工业蒸汽量预测(六)
背景描述
- 背景介绍
火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。
- 相关描述、
经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。
- 结果评估
预测结果以mean square error作为评判标准。
数据说明
数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。
数据来源
http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt
http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt
实战内容
6.模型融合
下面把上篇关键流程在跑一边
导入包和数据
import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt plt.rcParams.update({'figure.max_open_warning': 0}) import seaborn as sns import pandas as pd import numpy as np from scipy import stats from sklearn.model_selection import train_test_split from sklearn.model_selection import GridSearchCV, RepeatedKFold, cross_val_score,cross_val_predict,KFold from sklearn.metrics import make_scorer,mean_squared_error from sklearn.linear_model import LinearRegression, Lasso, Ridge, ElasticNet from sklearn.svm import LinearSVR, SVR from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor,AdaBoostRegressor from xgboost import XGBRegressor from sklearn.preprocessing import PolynomialFeatures,MinMaxScaler,StandardScaler with open("./zhengqi_train.txt") as fr: data_train=pd.read_table(fr,sep="\t") with open("./zhengqi_test.txt") as fr_test: data_test=pd.read_table(fr_test,sep="\t")
合并数据
data_train["oringin"]="train" data_test["oringin"]="test" data_all=pd.concat([data_train,data_test],axis=0,ignore_index=True)
删除相关特征
data_all.drop(["V5","V9","V11","V17","V22","V28"],axis=1,inplace=True)
数据最大最小归一化
cols_numeric=list(data_all.columns) cols_numeric.remove("oringin") def scale_minmax(col): return (col-col.min())/(col.max()-col.min()) scale_cols = [col for col in cols_numeric if col!='target'] data_all[scale_cols] = data_all[scale_cols].apply(scale_minmax,axis=0)
画图:探查特征和标签相关信息
对特征进行Box-Cox变换,使其满足正态性
Box-Cox变换是Box和Cox在1964年提出的一种广义幂变换方法,是统计建模中常用的一种数据变换,用于连续的响应变量不满足正态分布的情况。Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。Box-Cox变换的主要特点是引入一个参数,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的
cols_transform=data_all.columns[0:-2] for col in cols_transform: # transform column data_all.loc[:,col], _ = stats.boxcox(data_all.loc[:,col]+1)
标签数据统计转换后的数据,计算分位数画图展示(基于正态分布)
print(data_all.target.describe()) plt.figure(figsize=(12,4)) plt.subplot(1,2,1) sns.distplot(data_all.target.dropna() , fit=stats.norm); plt.subplot(1,2,2) _=stats.probplot(data_all.target.dropna(), plot=plt)
标签数据对数变换数据,使数据更符合正态,并画图展示
sp = data_train.target data_train.target1 =np.power(1.5,sp) print(data_train.target1.describe()) plt.figure(figsize=(12,4)) plt.subplot(1,2,1) sns.distplot(data_train.target1.dropna(),fit=stats.norm); plt.subplot(1,2,2) _=stats.probplot(data_train.target1.dropna(), plot=plt)
获取训练和测试数据
def get_training_data(): from sklearn.model_selection import train_test_split df_train = data_all[data_all["oringin"]=="train"] df_train["label"]=data_train.target1 y = df_train.target X = df_train.drop(["oringin","target","label"],axis=1) X_train,X_valid,y_train,y_valid=train_test_split(X,y,test_size=0.3,random_state=100) return X_train,X_valid,y_train,y_valid def get_test_data(): df_test = data_all[data_all["oringin"]=="test"].reset_index(drop=True) return df_test.drop(["oringin","target"],axis=1)
评分函数
from sklearn.metrics import make_scorer def rmse(y_true, y_pred): diff = y_pred - y_true sum_sq = sum(diff**2) n = len(y_pred) return np.sqrt(sum_sq/n) def mse(y_ture,y_pred): return mean_squared_error(y_ture,y_pred) rmse_scorer = make_scorer(rmse, greater_is_better=False) mse_scorer = make_scorer(mse, greater_is_better=False)
获取异常数据,并画图
def find_outliers(model, X, y, sigma=3): try: y_pred = pd.Series(model.predict(X), index=y.index) except: model.fit(X,y) y_pred = pd.Series(model.predict(X), index=y.index) resid = y - y_pred mean_resid = resid.mean() std_resid = resid.std() z = (resid - mean_resid)/std_resid outliers = z[abs(z)>sigma].index print('R2=',model.score(X,y)) print('rmse=',rmse(y, y_pred)) print("mse=",mean_squared_error(y,y_pred)) print('---------------------------------------') print('mean of residuals:',mean_resid) print('std of residuals:',std_resid) print('---------------------------------------') print(len(outliers),'outliers:') print(outliers.tolist()) plt.figure(figsize=(15,5)) ax_131 = plt.subplot(1,3,1) plt.plot(y,y_pred,'.') plt.plot(y.loc[outliers],y_pred.loc[outliers],'ro') plt.legend(['Accepted','Outlier']) plt.xlabel('y') plt.ylabel('y_pred'); ax_132=plt.subplot(1,3,2) plt.plot(y,y-y_pred,'.') plt.plot(y.loc[outliers],y.loc[outliers]-y_pred.loc[outliers],'ro') plt.legend(['Accepted','Outlier']) plt.xlabel('y') plt.ylabel('y - y_pred'); ax_133=plt.subplot(1,3,3) z.plot.hist(bins=50,ax=ax_133) z.loc[outliers].plot.hist(color='r',bins=50,ax=ax_133) plt.legend(['Accepted','Outlier']) plt.xlabel('z') plt.savefig('outliers.png') return outliers
from sklearn.linear_model import Ridge X_train, X_valid,y_train,y_valid = get_training_data() test=get_test_data()
outliers = find_outliers(Ridge(), X_train, y_train) X_outliers=X_train.loc[outliers] y_outliers=y_train.loc[outliers] X_t=X_train.drop(outliers) y_t=y_train.drop(outliers)
# 使用删除异常的数据进行模型训练 def get_trainning_data_omitoutliers(): y1=y_t.copy() X1=X_t.copy() return X1,y1
# 采用网格搜索训练模型 from sklearn.preprocessing import StandardScaler def train_model(model, param_grid=[], X=[], y=[], splits=5, repeats=5): if len(y)==0: X,y = get_trainning_data_omitoutliers() rkfold = RepeatedKFold(n_splits=splits, n_repeats=repeats) if len(param_grid)>0: gsearch = GridSearchCV(model, param_grid, cv=rkfold, scoring="neg_mean_squared_error", verbose=1, return_train_score=True) gsearch.fit(X,y) model = gsearch.best_estimator_ best_idx = gsearch.best_index_ grid_results = pd.DataFrame(gsearch.cv_results_) cv_mean = abs(grid_results.loc[best_idx,'mean_test_score']) cv_std = grid_results.loc[best_idx,'std_test_score'] else: grid_results = [] cv_results = cross_val_score(model, X, y, scoring="neg_mean_squared_error", cv=rkfold) cv_mean = abs(np.mean(cv_results)) cv_std = np.std(cv_results) cv_score = pd.Series({'mean':cv_mean,'std':cv_std}) y_pred = model.predict(X) print('----------------------') print(model) print('----------------------') print('score=',model.score(X,y)) print('rmse=',rmse(y, y_pred)) print('mse=',mse(y, y_pred)) print('cross_val: mean=',cv_mean,', std=',cv_std) y_pred = pd.Series(y_pred,index=y.index) resid = y - y_pred mean_resid = resid.mean() std_resid = resid.std() z = (resid - mean_resid)/std_resid n_outliers = sum(abs(z)>3) plt.figure(figsize=(15,5)) ax_131 = plt.subplot(1,3,1) plt.plot(y,y_pred,'.') plt.xlabel('y') plt.ylabel('y_pred'); plt.title('corr = {:.3f}'.format(np.corrcoef(y,y_pred)[0][1])) ax_132=plt.subplot(1,3,2) plt.plot(y,y-y_pred,'.') plt.xlabel('y') plt.ylabel('y - y_pred'); plt.title('std resid = {:.3f}'.format(std_resid)) ax_133=plt.subplot(1,3,3) z.plot.hist(bins=50,ax=ax_133) plt.xlabel('z') plt.title('{:.0f} samples with z>3'.format(n_outliers)) return model, cv_score, grid_results
opt_models = dict() score_models = pd.DataFrame(columns=['mean','std']) splits=5 repeats=5
6.1 单一模型预测效果
6.1.1 岭回归
model = 'Ridge' opt_models[model] = Ridge() alph_range = np.arange(0.25,6,0.25) param_grid = {'alpha': alph_range} opt_models[model],cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=repeats) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(alph_range, abs(grid_results['mean_test_score']), abs(grid_results['std_test_score'])/np.sqrt(splits*repeats)) plt.xlabel('alpha') plt.ylabel('score')
6.1.2 Lasso回归
model = 'Lasso' opt_models[model] = Lasso() alph_range = np.arange(1e-4,1e-3,4e-5) param_grid = {'alpha': alph_range} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=repeats) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(alph_range, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats)) plt.xlabel('alpha') plt.ylabel('score')
6.1.3 ElasticNet 回归
model ='ElasticNet' opt_models[model] = ElasticNet() param_grid = {'alpha': np.arange(1e-4,1e-3,1e-4), 'l1_ratio': np.arange(0.1,1.0,0.1), 'max_iter':[100000]} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=1) cv_score.name = model score_models = score_models.append(cv_score)
6.1.4 SVR回归
model='LinearSVR' opt_models[model] = LinearSVR() crange = np.arange(0.1,1.0,0.1) param_grid = {'C':crange, 'max_iter':[1000]} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=repeats) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(crange, abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*repeats)) plt.xlabel('C') plt.ylabel('score')
6.1.5 KNN最近邻
model = 'KNeighbors' opt_models[model] = KNeighborsRegressor() param_grid = {'n_neighbors':np.arange(3,11,1)} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=1) cv_score.name = model score_models = score_models.append(cv_score) plt.figure() plt.errorbar(np.arange(3,11,1), abs(grid_results['mean_test_score']),abs(grid_results['std_test_score'])/np.sqrt(splits*1)) plt.xlabel('n_neighbors') plt.ylabel('score')
6.1.6 GBDT 模型
model = 'GradientBoosting' opt_models[model] = GradientBoostingRegressor() param_grid = {'n_estimators':[150,250,350], 'max_depth':[1,2,3], 'min_samples_split':[5,6,7]} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=1) cv_score.name = model score_models = score_models.append(cv_score)
6.1.7XGB模型
model = 'XGB' opt_models[model] = XGBRegressor() param_grid = {'n_estimators':[100,200,300,400,500], 'max_depth':[1,2,3], } opt_models[model], cv_score,grid_results = train_model(opt_models[model], param_grid=param_grid, splits=splits, repeats=1) cv_score.name = model score_models = score_models.append(cv_score)
6.1.8 随机森林模型
model = 'RandomForest' opt_models[model] = RandomForestRegressor() param_grid = {'n_estimators':[100,150,200], 'max_features':[8,12,16,20,24], 'min_samples_split':[2,4,6]} opt_models[model], cv_score, grid_results = train_model(opt_models[model], param_grid=param_grid, splits=5, repeats=1) cv_score.name = model score_models = score_models.append(cv_score)
6.2 模型预测–多模型Bagging
def model_predict(test_data,test_y=[],stack=False): i=0 y_predict_total=np.zeros((test_data.shape[0],)) for model in opt_models.keys(): if model!="LinearSVR" and model!="KNeighbors": y_predict=opt_models[model].predict(test_data) y_predict_total+=y_predict i+=1 if len(test_y)>0: print("{}_mse:".format(model),mean_squared_error(y_predict,test_y)) y_predict_mean=np.round(y_predict_total/i,3) if len(test_y)>0: print("mean_mse:",mean_squared_error(y_predict_mean,test_y)) else: y_predict_mean=pd.Series(y_predict_mean) return y_predict_mean
# Bagging预测 model_predict(X_valid,y_valid)
6.3 模型融合Stacking
6.3.1 模型融合stacking简单示例
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import itertools from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier ##主要使用pip install mlxtend安装mlxtend from mlxtend.classifier import EnsembleVoteClassifier from mlxtend.data import iris_data from mlxtend.plotting import plot_decision_regions %matplotlib inline clf1 = LogisticRegression(random_state=0) clf2 = RandomForestClassifier(random_state=0) clf3 = SVC(random_state=0, probability=True) eclf = EnsembleVoteClassifier(clfs=[clf1, clf2, clf3], weights=[2, 1, 1], voting='soft') X, y = iris_data() X = X[:,[0, 2]] gs = gridspec.GridSpec(2, 2) fig = plt.figure(figsize=(10, 8)) for clf, lab, grd in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble'], itertools.product([0, 1], repeat=2)): clf.fit(X, y) ax = plt.subplot(gs[grd[0], grd[1]]) fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2) plt.title(lab) plt.show()
6.3.2工业蒸汽多模型融合stacking
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np from scipy import sparse import xgboost import lightgbm from sklearn.ensemble import RandomForestRegressor,AdaBoostRegressor,GradientBoostingRegressor,ExtraTreesRegressor from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error def stacking_reg(clf,train_x,train_y,test_x,clf_name,kf,label_split=None): train=np.zeros((train_x.shape[0],1)) test=np.zeros((test_x.shape[0],1)) test_pre=np.empty((folds,test_x.shape[0],1)) cv_scores=[] for i,(train_index,test_index) in enumerate(kf.split(train_x,label_split)): tr_x=train_x[train_index] tr_y=train_y[train_index] te_x=train_x[test_index] te_y = train_y[test_index] if clf_name in ["rf","ada","gb","et","lr","lsvc","knn"]: clf.fit(tr_x,tr_y) pre=clf.predict(te_x).reshape(-1,1) train[test_index]=pre test_pre[i,:]=clf.predict(test_x).reshape(-1,1) cv_scores.append(mean_squared_error(te_y, pre)) elif clf_name in ["xgb"]: train_matrix = clf.DMatrix(tr_x, label=tr_y, missing=-1) test_matrix = clf.DMatrix(te_x, label=te_y, missing=-1) z = clf.DMatrix(test_x, label=te_y, missing=-1) params = {'booster': 'gbtree', 'eval_metric': 'rmse', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, 'nthread': 12 } num_round = 1000 #记得修改 early_stopping_rounds = 10 #修改 watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ] if test_matrix: model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist, early_stopping_rounds=early_stopping_rounds ) pre= model.predict(test_matrix,ntree_limit=model.best_ntree_limit).reshape(-1,1) train[test_index]=pre test_pre[i, :]= model.predict(z, ntree_limit=model.best_ntree_limit).reshape(-1,1) cv_scores.append(mean_squared_error(te_y, pre)) elif clf_name in ["lgb"]: train_matrix = clf.Dataset(tr_x, label=tr_y) test_matrix = clf.Dataset(te_x, label=te_y) params = { 'boosting_type': 'gbdt', 'objective': 'regression_l2', 'metric': 'mse', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, 'nthread': 12, 'silent': True, } num_round = 1000 #修改 early_stopping_rounds = 10 #修改 if test_matrix: model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds ) pre= model.predict(te_x,num_iteration=model.best_iteration).reshape(-1,1) train[test_index]=pre test_pre[i, :]= model.predict(test_x, num_iteration=model.best_iteration).reshape(-1,1) cv_scores.append(mean_squared_error(te_y, pre)) else: raise IOError("Please add new clf.") print("%s now score is:"%clf_name,cv_scores) test[:]=test_pre.mean(axis=0) print("%s_score_list:"%clf_name,cv_scores) print("%s_score_mean:"%clf_name,np.mean(cv_scores)) return train.reshape(-1,1),test.reshape(-1,1)
模型融合stacking基学习器
def rf_reg(x_train, y_train, x_valid, kf, label_split=None): randomforest = RandomForestRegressor(n_estimators=100, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1) rf_train, rf_test = stacking_reg(randomforest, x_train, y_train, x_valid, "rf", kf, label_split=label_split) return rf_train, rf_test,"rf_reg" def ada_reg(x_train, y_train, x_valid, kf, label_split=None): adaboost = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01) ada_train, ada_test = stacking_reg(adaboost, x_train, y_train, x_valid, "ada", kf, label_split=label_split) return ada_train, ada_test,"ada_reg" def gb_reg(x_train, y_train, x_valid, kf, label_split=None): gbdt = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1) gbdt_train, gbdt_test = stacking_reg(gbdt, x_train, y_train, x_valid, "gb", kf, label_split=label_split) return gbdt_train, gbdt_test,"gb_reg" def et_reg(x_train, y_train, x_valid, kf, label_split=None): extratree = ExtraTreesRegressor(n_estimators=100, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1) et_train, et_test = stacking_reg(extratree, x_train, y_train, x_valid, "et", kf, label_split=label_split) return et_train, et_test,"et_reg" def lr_reg(x_train, y_train, x_valid, kf, label_split=None): lr_reg=LinearRegression(n_jobs=-1) lr_train, lr_test = stacking_reg(lr_reg, x_train, y_train, x_valid, "lr", kf, label_split=label_split) return lr_train, lr_test, "lr_reg" def xgb_reg(x_train, y_train, x_valid, kf, label_split=None): xgb_train, xgb_test = stacking_reg(xgboost, x_train, y_train, x_valid, "xgb", kf, label_split=label_split) return xgb_train, xgb_test,"xgb_reg" def lgb_reg(x_train, y_train, x_valid, kf, label_split=None): lgb_train, lgb_test = stacking_reg(lightgbm, x_train, y_train, x_valid, "lgb", kf, label_split=label_split) return lgb_train, lgb_test,"lgb_reg"
模型融合stacking预测
def stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True): for k, clf_list in enumerate(clf_list): clf_list = [clf_list] column_list = [] train_data_list=[] test_data_list=[] for clf in clf_list: train_data,test_data,clf_name=clf(x_train, y_train, x_valid, kf, label_split=label_split) train_data_list.append(train_data) test_data_list.append(test_data) column_list.append("clf_%s" % (clf_name)) train = np.concatenate(train_data_list, axis=1) test = np.concatenate(test_data_list, axis=1) if if_concat_origin: train = np.concatenate([x_train, train], axis=1) test = np.concatenate([x_valid, test], axis=1) print(x_train.shape) print(train.shape) print(clf_name) print(clf_name in ["lgb"]) if clf_fin in ["rf","ada","gb","et","lr","lsvc","knn"]: if clf_fin in ["rf"]: clf = RandomForestRegressor(n_estimators=100, max_depth=20, n_jobs=-1, random_state=2017, max_features="auto",verbose=1) elif clf_fin in ["ada"]: clf = AdaBoostRegressor(n_estimators=30, random_state=2017, learning_rate=0.01) elif clf_fin in ["gb"]: clf = GradientBoostingRegressor(learning_rate=0.04, n_estimators=100, subsample=0.8, random_state=2017,max_depth=5,verbose=1) elif clf_fin in ["et"]: clf = ExtraTreesRegressor(n_estimators=100, max_depth=35, max_features="auto", n_jobs=-1, random_state=2017,verbose=1) elif clf_fin in ["lr"]: clf = LinearRegression(n_jobs=-1) clf.fit(train, y_train) pre = clf.predict(test).reshape(-1,1) return pred elif clf_fin in ["xgb"]: clf = xgboost train_matrix = clf.DMatrix(train, label=y_train, missing=-1) test_matrix = clf.DMatrix(train, label=y_train, missing=-1) params = {'booster': 'gbtree', 'eval_metric': 'rmse', 'gamma': 1, 'min_child_weight': 1.5, 'max_depth': 5, 'lambda': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'eta': 0.03, 'tree_method': 'exact', 'seed': 2017, 'nthread': 12 } num_round = 1000 early_stopping_rounds = 10 watchlist = [(train_matrix, 'train'), (test_matrix, 'eval') ] model = clf.train(params, train_matrix, num_boost_round=num_round,evals=watchlist, early_stopping_rounds=early_stopping_rounds ) pre = model.predict(test,ntree_limit=model.best_ntree_limit).reshape(-1,1) return pre elif clf_fin in ["lgb"]: print(clf_name) clf = lightgbm train_matrix = clf.Dataset(train, label=y_train) test_matrix = clf.Dataset(train, label=y_train) params = { 'boosting_type': 'gbdt', 'objective': 'regression_l2', 'metric': 'mse', 'min_child_weight': 1.5, 'num_leaves': 2**5, 'lambda_l2': 10, 'subsample': 0.7, 'colsample_bytree': 0.7, 'colsample_bylevel': 0.7, 'learning_rate': 0.03, 'tree_method': 'exact', 'seed': 2017, 'nthread': 12, 'silent': True, } num_round = 1000 early_stopping_rounds = 10 model = clf.train(params, train_matrix,num_round,valid_sets=test_matrix, early_stopping_rounds=early_stopping_rounds ) print('pred') pre = model.predict(test,num_iteration=model.best_iteration).reshape(-1,1) print(pre) return pre
with open("./zhengqi_train.txt") as fr: data_train=pd.read_table(fr,sep="\t") with open("./zhengqi_test.txt") as fr_test: data_test=pd.read_table(fr_test,sep="\t")
### K折交叉验证 from sklearn.model_selection import StratifiedKFold, KFold folds = 5 seed = 1 kf = KFold(n_splits=5, shuffle=True, random_state=0)
### 训练集和测试集数据 x_train = data_train[data_test.columns].values x_valid = data_test[data_test.columns].values y_train = data_train['target'].values
### 使用lr_reg和lgb_reg进行融合预测 clf_list = [lr_reg, lgb_reg] clf_list = [lr_reg, rf_reg] #很容易过拟合 pred = stacking_pred(x_train, y_train, x_valid, kf, clf_list, label_split=None, clf_fin="lgb", if_concat_origin=True) print(pred)
运行结果:
lr now score is: [0.11573216950871248] lr now score is: [0.11573216950871248, 0.09417486426618929] lr now score is: [0.11573216950871248, 0.09417486426618929, 0.10805046561851059] lr now score is: [0.11573216950871248, 0.09417486426618929, 0.10805046561851059, 0.12420887065601556] lr now score is: [0.11573216950871248, 0.09417486426618929, 0.10805046561851059, 0.12420887065601556, 0.11940113841914012] lr_score_list: [0.11573216950871248, 0.09417486426618929, 0.10805046561851059, 0.12420887065601556, 0.11940113841914012] lr_score_mean: 0.1123135016937136 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000775 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 8846 [LightGBM] [Info] Number of data points in the train set: 2310, number of used features: 38 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.126200 [1] valid_0's l2: 0.992087 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.94735 [3] valid_0's l2: 0.905091 [4] valid_0's l2: 0.865237 [5] valid_0's l2: 0.828478 [6] valid_0's l2: 0.793015 [7] valid_0's l2: 0.759026 [8] valid_0's l2: 0.728042 [9] valid_0's l2: 0.697924 [10] valid_0's l2: 0.670335 [11] valid_0's l2: 0.64293 [12] valid_0's l2: 0.618124 [13] valid_0's l2: 0.593382 [14] valid_0's l2: 0.570581 [15] valid_0's l2: 0.549105 [16] valid_0's l2: 0.528357 [17] valid_0's l2: 0.509096 [18] valid_0's l2: 0.490868 [19] valid_0's l2: 0.473523 [20] valid_0's l2: 0.456674 [21] valid_0's l2: 0.440983 [22] valid_0's l2: 0.425928 [23] valid_0's l2: 0.411831 [24] valid_0's l2: 0.397973 [25] valid_0's l2: 0.384988 [26] valid_0's l2: 0.373082 [27] valid_0's l2: 0.361415 [28] valid_0's l2: 0.350399 [29] valid_0's l2: 0.34 [30] valid_0's l2: 0.330165 [31] valid_0's l2: 0.320483 [32] valid_0's l2: 0.311581 [33] valid_0's l2: 0.303078 [34] valid_0's l2: 0.294905 [35] valid_0's l2: 0.287238 [36] valid_0's l2: 0.280027 [37] valid_0's l2: 0.273352 [38] valid_0's l2: 0.266937 [39] valid_0's l2: 0.260499 [40] valid_0's l2: 0.254449 [41] valid_0's l2: 0.248739 [42] valid_0's l2: 0.243374 [43] valid_0's l2: 0.238653 [44] valid_0's l2: 0.233905 [45] valid_0's l2: 0.229188 [46] valid_0's l2: 0.224701 [47] valid_0's l2: 0.220568 [48] valid_0's l2: 0.216666 [49] valid_0's l2: 0.212891 [50] valid_0's l2: 0.209022 [51] valid_0's l2: 0.205757 [52] valid_0's l2: 0.202405 [53] valid_0's l2: 0.199308 [54] valid_0's l2: 0.196345 [55] valid_0's l2: 0.193315 [56] valid_0's l2: 0.190598 [57] valid_0's l2: 0.187959 [58] valid_0's l2: 0.18533 [59] valid_0's l2: 0.182929 [60] valid_0's l2: 0.18065 [61] valid_0's l2: 0.17836 [62] valid_0's l2: 0.176264 [63] valid_0's l2: 0.174016 [64] valid_0's l2: 0.171923 [65] valid_0's l2: 0.170216 [66] valid_0's l2: 0.168335 [67] valid_0's l2: 0.166779 [68] valid_0's l2: 0.165304 [69] valid_0's l2: 0.163656 [70] valid_0's l2: 0.162083 [71] valid_0's l2: 0.160492 [72] valid_0's l2: 0.15903 [73] valid_0's l2: 0.157814 [74] valid_0's l2: 0.156352 [75] valid_0's l2: 0.155014 [76] valid_0's l2: 0.153985 [77] valid_0's l2: 0.152924 [78] valid_0's l2: 0.151821 [79] valid_0's l2: 0.150688 [80] valid_0's l2: 0.149531 [81] valid_0's l2: 0.148456 [82] valid_0's l2: 0.147694 [83] valid_0's l2: 0.146765 [84] valid_0's l2: 0.146123 [85] valid_0's l2: 0.145419 [86] valid_0's l2: 0.144695 [87] valid_0's l2: 0.143943 [88] valid_0's l2: 0.143171 [89] valid_0's l2: 0.142534 [90] valid_0's l2: 0.141877 [91] valid_0's l2: 0.141059 [92] valid_0's l2: 0.140551 [93] valid_0's l2: 0.140009 [94] valid_0's l2: 0.139279 [95] valid_0's l2: 0.138569 [96] valid_0's l2: 0.137897 [97] valid_0's l2: 0.137388 [98] valid_0's l2: 0.13691 [99] valid_0's l2: 0.136396 [100] valid_0's l2: 0.135965 [101] valid_0's l2: 0.135373 [102] valid_0's l2: 0.134943 [103] valid_0's l2: 0.134332 [104] valid_0's l2: 0.13381 [105] valid_0's l2: 0.133447 [106] valid_0's l2: 0.133132 [107] valid_0's l2: 0.132678 [108] valid_0's l2: 0.132488 [109] valid_0's l2: 0.132117 [110] valid_0's l2: 0.131765 [111] valid_0's l2: 0.131372 [112] valid_0's l2: 0.131325 [113] valid_0's l2: 0.130853 [114] valid_0's l2: 0.13045 [115] valid_0's l2: 0.130218 [116] valid_0's l2: 0.13 [117] valid_0's l2: 0.129733 [118] valid_0's l2: 0.129497 [119] valid_0's l2: 0.129287 [120] valid_0's l2: 0.128982 [121] valid_0's l2: 0.128911 [122] valid_0's l2: 0.128714 [123] valid_0's l2: 0.128563 [124] valid_0's l2: 0.128345 [125] valid_0's l2: 0.12804 [126] valid_0's l2: 0.127975 [127] valid_0's l2: 0.127807 [128] valid_0's l2: 0.127702 [129] valid_0's l2: 0.127429 [130] valid_0's l2: 0.127234 [131] valid_0's l2: 0.127074 [132] valid_0's l2: 0.127011 [133] valid_0's l2: 0.12685 [134] valid_0's l2: 0.12671 [135] valid_0's l2: 0.126406 [136] valid_0's l2: 0.126114 [137] valid_0's l2: 0.125927 [138] valid_0's l2: 0.125792 [139] valid_0's l2: 0.125551 [140] valid_0's l2: 0.125378 [141] valid_0's l2: 0.125224 [142] valid_0's l2: 0.125075 [143] valid_0's l2: 0.124855 [144] valid_0's l2: 0.124729 [145] valid_0's l2: 0.124603 [146] valid_0's l2: 0.124488 [147] valid_0's l2: 0.124202 [148] valid_0's l2: 0.123975 [149] valid_0's l2: 0.123834 [150] valid_0's l2: 0.123747 [151] valid_0's l2: 0.123547 [152] valid_0's l2: 0.123488 [153] valid_0's l2: 0.123464 [154] valid_0's l2: 0.123332 [155] valid_0's l2: 0.123226 [156] valid_0's l2: 0.123147 [157] valid_0's l2: 0.123009 [158] valid_0's l2: 0.122874 [159] valid_0's l2: 0.122711 [160] valid_0's l2: 0.122515 [161] valid_0's l2: 0.12241 [162] valid_0's l2: 0.122304 [163] valid_0's l2: 0.122279 [164] valid_0's l2: 0.122161 [165] valid_0's l2: 0.122075 [166] valid_0's l2: 0.121921 [167] valid_0's l2: 0.121898 [168] valid_0's l2: 0.121687 [169] valid_0's l2: 0.121627 [170] valid_0's l2: 0.121632 [171] valid_0's l2: 0.121461 [172] valid_0's l2: 0.12135 [173] valid_0's l2: 0.121271 [174] valid_0's l2: 0.1211 [175] valid_0's l2: 0.121032 [176] valid_0's l2: 0.12105 [177] valid_0's l2: 0.120974 [178] valid_0's l2: 0.120873 [179] valid_0's l2: 0.120812 [180] valid_0's l2: 0.120656 [181] valid_0's l2: 0.120546 [182] valid_0's l2: 0.120499 [183] valid_0's l2: 0.12045 [184] valid_0's l2: 0.120431 [185] valid_0's l2: 0.120385 [186] valid_0's l2: 0.120317 [187] valid_0's l2: 0.120107 [188] valid_0's l2: 0.120094 [189] valid_0's l2: 0.120012 [190] valid_0's l2: 0.119968 [191] valid_0's l2: 0.119858 [192] valid_0's l2: 0.119831 [193] valid_0's l2: 0.119706 [194] valid_0's l2: 0.119654 [195] valid_0's l2: 0.119578 [196] valid_0's l2: 0.119593 [197] valid_0's l2: 0.119558 [198] valid_0's l2: 0.119572 [199] valid_0's l2: 0.11962 [200] valid_0's l2: 0.119574 [201] valid_0's l2: 0.119535 [202] valid_0's l2: 0.119481 [203] valid_0's l2: 0.1194 [204] valid_0's l2: 0.119352 [205] valid_0's l2: 0.119355 [206] valid_0's l2: 0.119352 [207] valid_0's l2: 0.119336 [208] valid_0's l2: 0.119256 [209] valid_0's l2: 0.119248 [210] valid_0's l2: 0.1193 [211] valid_0's l2: 0.119222 [212] valid_0's l2: 0.1191 [213] valid_0's l2: 0.119105 [214] valid_0's l2: 0.119048 [215] valid_0's l2: 0.119149 [216] valid_0's l2: 0.119107 [217] valid_0's l2: 0.119024 [218] valid_0's l2: 0.118886 [219] valid_0's l2: 0.118847 [220] valid_0's l2: 0.118799 [221] valid_0's l2: 0.118715 [222] valid_0's l2: 0.11867 [223] valid_0's l2: 0.118671 [224] valid_0's l2: 0.118667 [225] valid_0's l2: 0.118674 [226] valid_0's l2: 0.118661 [227] valid_0's l2: 0.118636 [228] valid_0's l2: 0.118587 [229] valid_0's l2: 0.118612 [230] valid_0's l2: 0.118581 [231] valid_0's l2: 0.118531 [232] valid_0's l2: 0.118462 [233] valid_0's l2: 0.118486 [234] valid_0's l2: 0.118461 [235] valid_0's l2: 0.11846 [236] valid_0's l2: 0.118457 [237] valid_0's l2: 0.118307 [238] valid_0's l2: 0.118244 [239] valid_0's l2: 0.118185 [240] valid_0's l2: 0.11818 [241] valid_0's l2: 0.118242 [242] valid_0's l2: 0.118193 [243] valid_0's l2: 0.118126 [244] valid_0's l2: 0.118134 [245] valid_0's l2: 0.118132 [246] valid_0's l2: 0.11809 [247] valid_0's l2: 0.118078 [248] valid_0's l2: 0.118082 [249] valid_0's l2: 0.118026 [250] valid_0's l2: 0.117904 [251] valid_0's l2: 0.117845 [252] valid_0's l2: 0.11778 [253] valid_0's l2: 0.117714 [254] valid_0's l2: 0.117665 [255] valid_0's l2: 0.117614 [256] valid_0's l2: 0.117606 [257] valid_0's l2: 0.117558 [258] valid_0's l2: 0.117562 [259] valid_0's l2: 0.117578 [260] valid_0's l2: 0.117497 [261] valid_0's l2: 0.117504 [262] valid_0's l2: 0.117394 [263] valid_0's l2: 0.117426 [264] valid_0's l2: 0.117393 [265] valid_0's l2: 0.117334 [266] valid_0's l2: 0.117273 [267] valid_0's l2: 0.117258 [268] valid_0's l2: 0.117163 [269] valid_0's l2: 0.117064 [270] valid_0's l2: 0.117054 [271] valid_0's l2: 0.116993 [272] valid_0's l2: 0.116947 [273] valid_0's l2: 0.116938 [274] valid_0's l2: 0.11687 [275] valid_0's l2: 0.116836 [276] valid_0's l2: 0.116819 [277] valid_0's l2: 0.116712 [278] valid_0's l2: 0.116708 [279] valid_0's l2: 0.116678 [280] valid_0's l2: 0.116601 [281] valid_0's l2: 0.116624 [282] valid_0's l2: 0.116609 [283] valid_0's l2: 0.116566 [284] valid_0's l2: 0.116513 [285] valid_0's l2: 0.116429 [286] valid_0's l2: 0.116397 [287] valid_0's l2: 0.116341 [288] valid_0's l2: 0.116352 [289] valid_0's l2: 0.116273 [290] valid_0's l2: 0.116209 [291] valid_0's l2: 0.116211 [292] valid_0's l2: 0.116152 [293] valid_0's l2: 0.116054 [294] valid_0's l2: 0.116108 [295] valid_0's l2: 0.116138 [296] valid_0's l2: 0.116053 [297] valid_0's l2: 0.115981 [298] valid_0's l2: 0.115985 [299] valid_0's l2: 0.115993 [300] valid_0's l2: 0.116019 [301] valid_0's l2: 0.115995 [302] valid_0's l2: 0.115975 [303] valid_0's l2: 0.116 [304] valid_0's l2: 0.116 [305] valid_0's l2: 0.116021 [306] valid_0's l2: 0.115995 [307] valid_0's l2: 0.11593 [308] valid_0's l2: 0.116007 [309] valid_0's l2: 0.115919 [310] valid_0's l2: 0.115891 [311] valid_0's l2: 0.115829 [312] valid_0's l2: 0.115794 [313] valid_0's l2: 0.115731 [314] valid_0's l2: 0.115761 [315] valid_0's l2: 0.115739 [316] valid_0's l2: 0.115764 [317] valid_0's l2: 0.11573 [318] valid_0's l2: 0.115768 [319] valid_0's l2: 0.115734 [320] valid_0's l2: 0.115697 [321] valid_0's l2: 0.115695 [322] valid_0's l2: 0.115712 [323] valid_0's l2: 0.115718 [324] valid_0's l2: 0.115734 [325] valid_0's l2: 0.115727 [326] valid_0's l2: 0.115686 [327] valid_0's l2: 0.115648 [328] valid_0's l2: 0.115636 [329] valid_0's l2: 0.115625 [330] valid_0's l2: 0.115597 [331] valid_0's l2: 0.115626 [332] valid_0's l2: 0.115595 [333] valid_0's l2: 0.115582 [334] valid_0's l2: 0.115557 [335] valid_0's l2: 0.115527 [336] valid_0's l2: 0.115515 [337] valid_0's l2: 0.115534 [338] valid_0's l2: 0.115483 [339] valid_0's l2: 0.115444 [340] valid_0's l2: 0.115384 [341] valid_0's l2: 0.115406 [342] valid_0's l2: 0.115391 [343] valid_0's l2: 0.115322 [344] valid_0's l2: 0.115266 [345] valid_0's l2: 0.115204 [346] valid_0's l2: 0.115179 [347] valid_0's l2: 0.11522 [348] valid_0's l2: 0.115214 [349] valid_0's l2: 0.115203 [350] valid_0's l2: 0.115172 [351] valid_0's l2: 0.115147 [352] valid_0's l2: 0.115143 [353] valid_0's l2: 0.115097 [354] valid_0's l2: 0.115099 [355] valid_0's l2: 0.115052 [356] valid_0's l2: 0.115009 [357] valid_0's l2: 0.114997 [358] valid_0's l2: 0.114963 [359] valid_0's l2: 0.114959 [360] valid_0's l2: 0.114912 [361] valid_0's l2: 0.11486 [362] valid_0's l2: 0.114881 [363] valid_0's l2: 0.11483 [364] valid_0's l2: 0.114854 [365] valid_0's l2: 0.114857 [366] valid_0's l2: 0.114823 [367] valid_0's l2: 0.114828 [368] valid_0's l2: 0.114765 [369] valid_0's l2: 0.114746 [370] valid_0's l2: 0.114722 [371] valid_0's l2: 0.114708 [372] valid_0's l2: 0.114678 [373] valid_0's l2: 0.114686 [374] valid_0's l2: 0.114669 [375] valid_0's l2: 0.114655 [376] valid_0's l2: 0.114645 [377] valid_0's l2: 0.11467 [378] valid_0's l2: 0.114674 [379] valid_0's l2: 0.114707 [380] valid_0's l2: 0.114689 [381] valid_0's l2: 0.114679 [382] valid_0's l2: 0.11467 [383] valid_0's l2: 0.11469 [384] valid_0's l2: 0.114667 [385] valid_0's l2: 0.114656 [386] valid_0's l2: 0.114657 Early stopping, best iteration is: [376] valid_0's l2: 0.114645 lgb now score is: [0.11464525315121991] [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000858 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 8833 [LightGBM] [Info] Number of data points in the train set: 2310, number of used features: 38 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.111094 [1] valid_0's l2: 0.86091 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.822041 [3] valid_0's l2: 0.784715 [4] valid_0's l2: 0.749897 [5] valid_0's l2: 0.71688 [6] valid_0's l2: 0.686156 [7] valid_0's l2: 0.656374 [8] valid_0's l2: 0.628383 [9] valid_0's l2: 0.601579 [10] valid_0's l2: 0.576335 [11] valid_0's l2: 0.552179 [12] valid_0's l2: 0.529819 [13] valid_0's l2: 0.508092 [14] valid_0's l2: 0.488383 [15] valid_0's l2: 0.46922 [16] valid_0's l2: 0.45117 [17] valid_0's l2: 0.434806 [18] valid_0's l2: 0.419967 [19] valid_0's l2: 0.404153 [20] valid_0's l2: 0.389472 [21] valid_0's l2: 0.375817 [22] valid_0's l2: 0.362587 [23] valid_0's l2: 0.349989 [24] valid_0's l2: 0.337657 [25] valid_0's l2: 0.326825 [26] valid_0's l2: 0.316732 [27] valid_0's l2: 0.306624 [28] valid_0's l2: 0.296987 [29] valid_0's l2: 0.287803 [30] valid_0's l2: 0.279086 [31] valid_0's l2: 0.27072 [32] valid_0's l2: 0.262841 [33] valid_0's l2: 0.255607 [34] valid_0's l2: 0.24856 [35] valid_0's l2: 0.24187 [36] valid_0's l2: 0.23572 [37] valid_0's l2: 0.229697 [38] valid_0's l2: 0.223881 [39] valid_0's l2: 0.218407 [40] valid_0's l2: 0.213644 [41] valid_0's l2: 0.208768 [42] valid_0's l2: 0.204136 [43] valid_0's l2: 0.199997 [44] valid_0's l2: 0.196003 [45] valid_0's l2: 0.192227 [46] valid_0's l2: 0.18864 [47] valid_0's l2: 0.185191 [48] valid_0's l2: 0.181781 [49] valid_0's l2: 0.178617 [50] valid_0's l2: 0.17564 [51] valid_0's l2: 0.17263 [52] valid_0's l2: 0.170023 [53] valid_0's l2: 0.167523 [54] valid_0's l2: 0.16511 [55] valid_0's l2: 0.162756 [56] valid_0's l2: 0.160283 [57] valid_0's l2: 0.158385 [58] valid_0's l2: 0.156343 [59] valid_0's l2: 0.154427 [60] valid_0's l2: 0.152609 [61] valid_0's l2: 0.150822 [62] valid_0's l2: 0.148894 [63] valid_0's l2: 0.147392 [64] valid_0's l2: 0.145769 [65] valid_0's l2: 0.14409 [66] valid_0's l2: 0.142545 [67] valid_0's l2: 0.141187 [68] valid_0's l2: 0.139822 [69] valid_0's l2: 0.138396 [70] valid_0's l2: 0.137236 [71] valid_0's l2: 0.136107 [72] valid_0's l2: 0.135055 [73] valid_0's l2: 0.133874 [74] valid_0's l2: 0.132889 [75] valid_0's l2: 0.131947 [76] valid_0's l2: 0.131061 [77] valid_0's l2: 0.130208 [78] valid_0's l2: 0.12939 [79] valid_0's l2: 0.128622 [80] valid_0's l2: 0.127771 [81] valid_0's l2: 0.126905 [82] valid_0's l2: 0.126137 [83] valid_0's l2: 0.12548 [84] valid_0's l2: 0.124831 [85] valid_0's l2: 0.12432 [86] valid_0's l2: 0.123806 [87] valid_0's l2: 0.12327 [88] valid_0's l2: 0.122608 [89] valid_0's l2: 0.12219 [90] valid_0's l2: 0.12163 [91] valid_0's l2: 0.121188 [92] valid_0's l2: 0.120653 [93] valid_0's l2: 0.120216 [94] valid_0's l2: 0.119754 [95] valid_0's l2: 0.119218 [96] valid_0's l2: 0.118903 [97] valid_0's l2: 0.118442 [98] valid_0's l2: 0.118042 [99] valid_0's l2: 0.117763 [100] valid_0's l2: 0.117492 [101] valid_0's l2: 0.117117 [102] valid_0's l2: 0.116843 [103] valid_0's l2: 0.116697 [104] valid_0's l2: 0.116437 [105] valid_0's l2: 0.11609 [106] valid_0's l2: 0.115905 [107] valid_0's l2: 0.115726 [108] valid_0's l2: 0.115542 [109] valid_0's l2: 0.115341 [110] valid_0's l2: 0.115002 [111] valid_0's l2: 0.11472 [112] valid_0's l2: 0.114469 [113] valid_0's l2: 0.114079 [114] valid_0's l2: 0.113868 [115] valid_0's l2: 0.113736 [116] valid_0's l2: 0.113459 [117] valid_0's l2: 0.113129 [118] valid_0's l2: 0.112894 [119] valid_0's l2: 0.112745 [120] valid_0's l2: 0.112488 [121] valid_0's l2: 0.112348 [122] valid_0's l2: 0.112149 [123] valid_0's l2: 0.11209 [124] valid_0's l2: 0.112012 [125] valid_0's l2: 0.111745 [126] valid_0's l2: 0.111642 [127] valid_0's l2: 0.111644 [128] valid_0's l2: 0.111437 [129] valid_0's l2: 0.111257 [130] valid_0's l2: 0.111145 [131] valid_0's l2: 0.110934 [132] valid_0's l2: 0.110702 [133] valid_0's l2: 0.110584 [134] valid_0's l2: 0.11045 [135] valid_0's l2: 0.110237 [136] valid_0's l2: 0.110031 [137] valid_0's l2: 0.109968 [138] valid_0's l2: 0.109877 [139] valid_0's l2: 0.109718 [140] valid_0's l2: 0.109607 [141] valid_0's l2: 0.109424 [142] valid_0's l2: 0.109276 [143] valid_0's l2: 0.109145 [144] valid_0's l2: 0.10913 [145] valid_0's l2: 0.108893 [146] valid_0's l2: 0.108787 [147] valid_0's l2: 0.10868 [148] valid_0's l2: 0.108603 [149] valid_0's l2: 0.108512 [150] valid_0's l2: 0.108397 [151] valid_0's l2: 0.108256 [152] valid_0's l2: 0.108152 [153] valid_0's l2: 0.108033 [154] valid_0's l2: 0.10799 [155] valid_0's l2: 0.107907 [156] valid_0's l2: 0.107812 [157] valid_0's l2: 0.107647 [158] valid_0's l2: 0.107671 [159] valid_0's l2: 0.107591 [160] valid_0's l2: 0.107406 [161] valid_0's l2: 0.107304 [162] valid_0's l2: 0.107164 [163] valid_0's l2: 0.107023 [164] valid_0's l2: 0.106946 [165] valid_0's l2: 0.106876 [166] valid_0's l2: 0.106805 [167] valid_0's l2: 0.106705 [168] valid_0's l2: 0.106638 [169] valid_0's l2: 0.106514 [170] valid_0's l2: 0.106384 [171] valid_0's l2: 0.106304 [172] valid_0's l2: 0.106133 [173] valid_0's l2: 0.106015 [174] valid_0's l2: 0.105924 [175] valid_0's l2: 0.105863 [176] valid_0's l2: 0.105869 [177] valid_0's l2: 0.105779 [178] valid_0's l2: 0.105551 [179] valid_0's l2: 0.105415 [180] valid_0's l2: 0.105419 [181] valid_0's l2: 0.105338 [182] valid_0's l2: 0.105306 [183] valid_0's l2: 0.105239 [184] valid_0's l2: 0.105156 [185] valid_0's l2: 0.105091 [186] valid_0's l2: 0.104991 [187] valid_0's l2: 0.104883 [188] valid_0's l2: 0.104786 [189] valid_0's l2: 0.104672 [190] valid_0's l2: 0.104588 [191] valid_0's l2: 0.10446 [192] valid_0's l2: 0.104321 [193] valid_0's l2: 0.104167 [194] valid_0's l2: 0.104112 [195] valid_0's l2: 0.104088 [196] valid_0's l2: 0.103962 [197] valid_0's l2: 0.103874 [198] valid_0's l2: 0.103831 [199] valid_0's l2: 0.10369 [200] valid_0's l2: 0.103604 [201] valid_0's l2: 0.103497 [202] valid_0's l2: 0.103407 [203] valid_0's l2: 0.103347 [204] valid_0's l2: 0.103283 [205] valid_0's l2: 0.103201 [206] valid_0's l2: 0.103152 [207] valid_0's l2: 0.103015 [208] valid_0's l2: 0.10293 [209] valid_0's l2: 0.102952 [210] valid_0's l2: 0.102864 [211] valid_0's l2: 0.102785 [212] valid_0's l2: 0.102692 [213] valid_0's l2: 0.102638 [214] valid_0's l2: 0.102561 [215] valid_0's l2: 0.10256 [216] valid_0's l2: 0.102528 [217] valid_0's l2: 0.102487 [218] valid_0's l2: 0.102494 [219] valid_0's l2: 0.10243 [220] valid_0's l2: 0.102457 [221] valid_0's l2: 0.102365 [222] valid_0's l2: 0.102228 [223] valid_0's l2: 0.102156 [224] valid_0's l2: 0.102063 [225] valid_0's l2: 0.102145 [226] valid_0's l2: 0.102083 [227] valid_0's l2: 0.102066 [228] valid_0's l2: 0.102016 [229] valid_0's l2: 0.102006 [230] valid_0's l2: 0.101921 [231] valid_0's l2: 0.101862 [232] valid_0's l2: 0.101847 [233] valid_0's l2: 0.101761 [234] valid_0's l2: 0.101755 [235] valid_0's l2: 0.101747 [236] valid_0's l2: 0.101702 [237] valid_0's l2: 0.101608 [238] valid_0's l2: 0.101607 [239] valid_0's l2: 0.101464 [240] valid_0's l2: 0.101384 [241] valid_0's l2: 0.101364 [242] valid_0's l2: 0.101346 [243] valid_0's l2: 0.101302 [244] valid_0's l2: 0.101225 [245] valid_0's l2: 0.101195 [246] valid_0's l2: 0.101125 [247] valid_0's l2: 0.101072 [248] valid_0's l2: 0.101005 [249] valid_0's l2: 0.100976 [250] valid_0's l2: 0.100874 [251] valid_0's l2: 0.100874 [252] valid_0's l2: 0.100843 [253] valid_0's l2: 0.100802 [254] valid_0's l2: 0.100783 [255] valid_0's l2: 0.100779 [256] valid_0's l2: 0.100681 [257] valid_0's l2: 0.10069 [258] valid_0's l2: 0.100656 [259] valid_0's l2: 0.100587 [260] valid_0's l2: 0.100539 [261] valid_0's l2: 0.100492 [262] valid_0's l2: 0.10048 [263] valid_0's l2: 0.100485 [264] valid_0's l2: 0.100487 [265] valid_0's l2: 0.100397 [266] valid_0's l2: 0.100363 [267] valid_0's l2: 0.100408 [268] valid_0's l2: 0.100387 [269] valid_0's l2: 0.100363 [270] valid_0's l2: 0.100378 [271] valid_0's l2: 0.100295 [272] valid_0's l2: 0.100238 [273] valid_0's l2: 0.100259 [274] valid_0's l2: 0.100276 [275] valid_0's l2: 0.100261 [276] valid_0's l2: 0.100274 [277] valid_0's l2: 0.100225 [278] valid_0's l2: 0.100204 [279] valid_0's l2: 0.10016 [280] valid_0's l2: 0.100246 [281] valid_0's l2: 0.100259 [282] valid_0's l2: 0.100302 [283] valid_0's l2: 0.100283 [284] valid_0's l2: 0.100334 [285] valid_0's l2: 0.100346 [286] valid_0's l2: 0.100354 [287] valid_0's l2: 0.100367 [288] valid_0's l2: 0.100362 [289] valid_0's l2: 0.100308 Early stopping, best iteration is: [279] valid_0's l2: 0.10016 lgb now score is: [0.11464525315121991, 0.1001602219958722] [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000817 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 8847 [LightGBM] [Info] Number of data points in the train set: 2310, number of used features: 38 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.137391 [1] valid_0's l2: 0.925026 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.882263 [3] valid_0's l2: 0.841261 [4] valid_0's l2: 0.802716 [5] valid_0's l2: 0.766211 [6] valid_0's l2: 0.732444 [7] valid_0's l2: 0.700039 [8] valid_0's l2: 0.669955 [9] valid_0's l2: 0.641029 [10] valid_0's l2: 0.614484 [11] valid_0's l2: 0.588721 [12] valid_0's l2: 0.564669 [13] valid_0's l2: 0.541491 [14] valid_0's l2: 0.519434 [15] valid_0's l2: 0.498759 [16] valid_0's l2: 0.478783 [17] valid_0's l2: 0.460135 [18] valid_0's l2: 0.443683 [19] valid_0's l2: 0.427316 [20] valid_0's l2: 0.411839 [21] valid_0's l2: 0.396345 [22] valid_0's l2: 0.382314 [23] valid_0's l2: 0.368991 [24] valid_0's l2: 0.356666 [25] valid_0's l2: 0.344728 [26] valid_0's l2: 0.332818 [27] valid_0's l2: 0.322327 [28] valid_0's l2: 0.312361 [29] valid_0's l2: 0.302618 [30] valid_0's l2: 0.293583 [31] valid_0's l2: 0.284772 [32] valid_0's l2: 0.27643 [33] valid_0's l2: 0.268242 [34] valid_0's l2: 0.260699 [35] valid_0's l2: 0.25392 [36] valid_0's l2: 0.247676 [37] valid_0's l2: 0.241242 [38] valid_0's l2: 0.235133 [39] valid_0's l2: 0.229733 [40] valid_0's l2: 0.224359 [41] valid_0's l2: 0.219506 [42] valid_0's l2: 0.214509 [43] valid_0's l2: 0.210222 [44] valid_0's l2: 0.205951 [45] valid_0's l2: 0.201601 [46] valid_0's l2: 0.197821 [47] valid_0's l2: 0.193874 [48] valid_0's l2: 0.190225 [49] valid_0's l2: 0.1869 [50] valid_0's l2: 0.183644 [51] valid_0's l2: 0.180409 [52] valid_0's l2: 0.177691 [53] valid_0's l2: 0.174935 [54] valid_0's l2: 0.172226 [55] valid_0's l2: 0.169595 [56] valid_0's l2: 0.167186 [57] valid_0's l2: 0.164992 [58] valid_0's l2: 0.162876 [59] valid_0's l2: 0.16082 [60] valid_0's l2: 0.158811 [61] valid_0's l2: 0.156882 [62] valid_0's l2: 0.155007 [63] valid_0's l2: 0.153246 [64] valid_0's l2: 0.151493 [65] valid_0's l2: 0.149942 [66] valid_0's l2: 0.148382 [67] valid_0's l2: 0.146962 [68] valid_0's l2: 0.14547 [69] valid_0's l2: 0.144072 [70] valid_0's l2: 0.142969 [71] valid_0's l2: 0.141822 [72] valid_0's l2: 0.140529 [73] valid_0's l2: 0.139502 [74] valid_0's l2: 0.138325 [75] valid_0's l2: 0.13723 [76] valid_0's l2: 0.136285 [77] valid_0's l2: 0.13545 [78] valid_0's l2: 0.134449 [79] valid_0's l2: 0.13355 [80] valid_0's l2: 0.13274 [81] valid_0's l2: 0.132011 [82] valid_0's l2: 0.131104 [83] valid_0's l2: 0.130412 [84] valid_0's l2: 0.129725 [85] valid_0's l2: 0.129029 [86] valid_0's l2: 0.12832 [87] valid_0's l2: 0.127588 [88] valid_0's l2: 0.126903 [89] valid_0's l2: 0.126178 [90] valid_0's l2: 0.125507 [91] valid_0's l2: 0.12504 [92] valid_0's l2: 0.124611 [93] valid_0's l2: 0.124076 [94] valid_0's l2: 0.123501 [95] valid_0's l2: 0.122931 [96] valid_0's l2: 0.122337 [97] valid_0's l2: 0.121932 [98] valid_0's l2: 0.121426 [99] valid_0's l2: 0.121102 [100] valid_0's l2: 0.12074 [101] valid_0's l2: 0.12041 [102] valid_0's l2: 0.119975 [103] valid_0's l2: 0.119506 [104] valid_0's l2: 0.119246 [105] valid_0's l2: 0.119108 [106] valid_0's l2: 0.118802 [107] valid_0's l2: 0.118554 [108] valid_0's l2: 0.118359 [109] valid_0's l2: 0.118068 [110] valid_0's l2: 0.117868 [111] valid_0's l2: 0.117693 [112] valid_0's l2: 0.117375 [113] valid_0's l2: 0.117295 [114] valid_0's l2: 0.117114 [115] valid_0's l2: 0.116833 [116] valid_0's l2: 0.116496 [117] valid_0's l2: 0.116232 [118] valid_0's l2: 0.115975 [119] valid_0's l2: 0.115697 [120] valid_0's l2: 0.115323 [121] valid_0's l2: 0.114989 [122] valid_0's l2: 0.114795 [123] valid_0's l2: 0.114335 [124] valid_0's l2: 0.114077 [125] valid_0's l2: 0.11381 [126] valid_0's l2: 0.113463 [127] valid_0's l2: 0.113259 [128] valid_0's l2: 0.113066 [129] valid_0's l2: 0.112829 [130] valid_0's l2: 0.112548 [131] valid_0's l2: 0.112225 [132] valid_0's l2: 0.112089 [133] valid_0's l2: 0.111891 [134] valid_0's l2: 0.111786 [135] valid_0's l2: 0.111564 [136] valid_0's l2: 0.111354 [137] valid_0's l2: 0.111186 [138] valid_0's l2: 0.110975 [139] valid_0's l2: 0.110834 [140] valid_0's l2: 0.110615 [141] valid_0's l2: 0.110417 [142] valid_0's l2: 0.110173 [143] valid_0's l2: 0.109991 [144] valid_0's l2: 0.109864 [145] valid_0's l2: 0.109838 [146] valid_0's l2: 0.109655 [147] valid_0's l2: 0.109553 [148] valid_0's l2: 0.109457 [149] valid_0's l2: 0.109316 [150] valid_0's l2: 0.109164 [151] valid_0's l2: 0.10898 [152] valid_0's l2: 0.108961 [153] valid_0's l2: 0.108942 [154] valid_0's l2: 0.10879 [155] valid_0's l2: 0.10868 [156] valid_0's l2: 0.108643 [157] valid_0's l2: 0.108405 [158] valid_0's l2: 0.108422 [159] valid_0's l2: 0.10839 [160] valid_0's l2: 0.108262 [161] valid_0's l2: 0.108223 [162] valid_0's l2: 0.108148 [163] valid_0's l2: 0.10811 [164] valid_0's l2: 0.107988 [165] valid_0's l2: 0.107869 [166] valid_0's l2: 0.107822 [167] valid_0's l2: 0.107675 [168] valid_0's l2: 0.107646 [169] valid_0's l2: 0.107497 [170] valid_0's l2: 0.107425 [171] valid_0's l2: 0.107329 [172] valid_0's l2: 0.107197 [173] valid_0's l2: 0.107198 [174] valid_0's l2: 0.107122 [175] valid_0's l2: 0.107053 [176] valid_0's l2: 0.106904 [177] valid_0's l2: 0.10679 [178] valid_0's l2: 0.106755 [179] valid_0's l2: 0.106669 [180] valid_0's l2: 0.10663 [181] valid_0's l2: 0.106529 [182] valid_0's l2: 0.106497 [183] valid_0's l2: 0.106452 [184] valid_0's l2: 0.106409 [185] valid_0's l2: 0.106313 [186] valid_0's l2: 0.106197 [187] valid_0's l2: 0.106146 [188] valid_0's l2: 0.106034 [189] valid_0's l2: 0.10599 [190] valid_0's l2: 0.105846 [191] valid_0's l2: 0.105816 [192] valid_0's l2: 0.105789 [193] valid_0's l2: 0.105665 [194] valid_0's l2: 0.105676 [195] valid_0's l2: 0.105641 [196] valid_0's l2: 0.105541 [197] valid_0's l2: 0.105433 [198] valid_0's l2: 0.105324 [199] valid_0's l2: 0.105224 [200] valid_0's l2: 0.105179 [201] valid_0's l2: 0.105183 [202] valid_0's l2: 0.105147 [203] valid_0's l2: 0.105078 [204] valid_0's l2: 0.105004 [205] valid_0's l2: 0.104887 [206] valid_0's l2: 0.104842 [207] valid_0's l2: 0.104784 [208] valid_0's l2: 0.104785 [209] valid_0's l2: 0.104708 [210] valid_0's l2: 0.104679 [211] valid_0's l2: 0.104632 [212] valid_0's l2: 0.104641 [213] valid_0's l2: 0.104635 [214] valid_0's l2: 0.104577 [215] valid_0's l2: 0.104529 [216] valid_0's l2: 0.104524 [217] valid_0's l2: 0.104494 [218] valid_0's l2: 0.104406 [219] valid_0's l2: 0.104381 [220] valid_0's l2: 0.104399 [221] valid_0's l2: 0.104383 [222] valid_0's l2: 0.104298 [223] valid_0's l2: 0.104221 [224] valid_0's l2: 0.1042 [225] valid_0's l2: 0.104102 [226] valid_0's l2: 0.1041 [227] valid_0's l2: 0.104083 [228] valid_0's l2: 0.104095 [229] valid_0's l2: 0.104039 [230] valid_0's l2: 0.104092 [231] valid_0's l2: 0.104071 [232] valid_0's l2: 0.103929 [233] valid_0's l2: 0.103913 [234] valid_0's l2: 0.103853 [235] valid_0's l2: 0.103845 [236] valid_0's l2: 0.103753 [237] valid_0's l2: 0.103843 [238] valid_0's l2: 0.103845 [239] valid_0's l2: 0.103858 [240] valid_0's l2: 0.103875 [241] valid_0's l2: 0.103815 [242] valid_0's l2: 0.103871 [243] valid_0's l2: 0.103868 [244] valid_0's l2: 0.103859 [245] valid_0's l2: 0.103853 [246] valid_0's l2: 0.103829 Early stopping, best iteration is: [236] valid_0's l2: 0.103753 lgb now score is: [0.11464525315121991, 0.1001602219958722, 0.10375315940652878] [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000785 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 8852 [LightGBM] [Info] Number of data points in the train set: 2311, number of used features: 38 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.126265 [1] valid_0's l2: 0.908704 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.868691 [3] valid_0's l2: 0.830532 [4] valid_0's l2: 0.794315 [5] valid_0's l2: 0.7611 [6] valid_0's l2: 0.728347 [7] valid_0's l2: 0.698418 [8] valid_0's l2: 0.669822 [9] valid_0's l2: 0.642236 [10] valid_0's l2: 0.617694 [11] valid_0's l2: 0.593604 [12] valid_0's l2: 0.57053 [13] valid_0's l2: 0.548345 [14] valid_0's l2: 0.527479 [15] valid_0's l2: 0.508192 [16] valid_0's l2: 0.489393 [17] valid_0's l2: 0.471802 [18] valid_0's l2: 0.456568 [19] valid_0's l2: 0.440842 [20] valid_0's l2: 0.425425 [21] valid_0's l2: 0.411385 [22] valid_0's l2: 0.39851 [23] valid_0's l2: 0.3862 [24] valid_0's l2: 0.374549 [25] valid_0's l2: 0.363075 [26] valid_0's l2: 0.352338 [27] valid_0's l2: 0.342305 [28] valid_0's l2: 0.332717 [29] valid_0's l2: 0.323468 [30] valid_0's l2: 0.314911 [31] valid_0's l2: 0.306372 [32] valid_0's l2: 0.298758 [33] valid_0's l2: 0.291218 [34] valid_0's l2: 0.284186 [35] valid_0's l2: 0.277231 [36] valid_0's l2: 0.270833 [37] valid_0's l2: 0.264518 [38] valid_0's l2: 0.258655 [39] valid_0's l2: 0.253038 [40] valid_0's l2: 0.247684 [41] valid_0's l2: 0.242439 [42] valid_0's l2: 0.23761 [43] valid_0's l2: 0.233467 [44] valid_0's l2: 0.229177 [45] valid_0's l2: 0.224878 [46] valid_0's l2: 0.220847 [47] valid_0's l2: 0.216928 [48] valid_0's l2: 0.213423 [49] valid_0's l2: 0.209869 [50] valid_0's l2: 0.206618 [51] valid_0's l2: 0.203104 [52] valid_0's l2: 0.200198 [53] valid_0's l2: 0.197226 [54] valid_0's l2: 0.194248 [55] valid_0's l2: 0.19163 [56] valid_0's l2: 0.188989 [57] valid_0's l2: 0.186768 [58] valid_0's l2: 0.184316 [59] valid_0's l2: 0.181846 [60] valid_0's l2: 0.179628 [61] valid_0's l2: 0.177584 [62] valid_0's l2: 0.175533 [63] valid_0's l2: 0.173613 [64] valid_0's l2: 0.17185 [65] valid_0's l2: 0.170217 [66] valid_0's l2: 0.168476 [67] valid_0's l2: 0.166895 [68] valid_0's l2: 0.165221 [69] valid_0's l2: 0.163738 [70] valid_0's l2: 0.162531 [71] valid_0's l2: 0.161344 [72] valid_0's l2: 0.160004 [73] valid_0's l2: 0.158696 [74] valid_0's l2: 0.157288 [75] valid_0's l2: 0.155998 [76] valid_0's l2: 0.15503 [77] valid_0's l2: 0.1542 [78] valid_0's l2: 0.153279 [79] valid_0's l2: 0.152067 [80] valid_0's l2: 0.15107 [81] valid_0's l2: 0.150341 [82] valid_0's l2: 0.149716 [83] valid_0's l2: 0.148821 [84] valid_0's l2: 0.148028 [85] valid_0's l2: 0.147276 [86] valid_0's l2: 0.146672 [87] valid_0's l2: 0.145871 [88] valid_0's l2: 0.145176 [89] valid_0's l2: 0.144463 [90] valid_0's l2: 0.143833 [91] valid_0's l2: 0.143094 [92] valid_0's l2: 0.142517 [93] valid_0's l2: 0.141894 [94] valid_0's l2: 0.141182 [95] valid_0's l2: 0.140756 [96] valid_0's l2: 0.140221 [97] valid_0's l2: 0.139578 [98] valid_0's l2: 0.139056 [99] valid_0's l2: 0.138617 [100] valid_0's l2: 0.137901 [101] valid_0's l2: 0.137304 [102] valid_0's l2: 0.13684 [103] valid_0's l2: 0.13648 [104] valid_0's l2: 0.13598 [105] valid_0's l2: 0.135534 [106] valid_0's l2: 0.135175 [107] valid_0's l2: 0.134796 [108] valid_0's l2: 0.134354 [109] valid_0's l2: 0.13388 [110] valid_0's l2: 0.13349 [111] valid_0's l2: 0.133151 [112] valid_0's l2: 0.132774 [113] valid_0's l2: 0.132428 [114] valid_0's l2: 0.132023 [115] valid_0's l2: 0.131581 [116] valid_0's l2: 0.131294 [117] valid_0's l2: 0.131037 [118] valid_0's l2: 0.130764 [119] valid_0's l2: 0.130524 [120] valid_0's l2: 0.130234 [121] valid_0's l2: 0.130037 [122] valid_0's l2: 0.129779 [123] valid_0's l2: 0.129572 [124] valid_0's l2: 0.129269 [125] valid_0's l2: 0.12902 [126] valid_0's l2: 0.128784 [127] valid_0's l2: 0.128563 [128] valid_0's l2: 0.128316 [129] valid_0's l2: 0.128097 [130] valid_0's l2: 0.127928 [131] valid_0's l2: 0.127674 [132] valid_0's l2: 0.127558 [133] valid_0's l2: 0.127249 [134] valid_0's l2: 0.127054 [135] valid_0's l2: 0.126784 [136] valid_0's l2: 0.126564 [137] valid_0's l2: 0.126427 [138] valid_0's l2: 0.126325 [139] valid_0's l2: 0.126169 [140] valid_0's l2: 0.125961 [141] valid_0's l2: 0.125765 [142] valid_0's l2: 0.125582 [143] valid_0's l2: 0.125344 [144] valid_0's l2: 0.125255 [145] valid_0's l2: 0.125064 [146] valid_0's l2: 0.12491 [147] valid_0's l2: 0.124751 [148] valid_0's l2: 0.124617 [149] valid_0's l2: 0.124444 [150] valid_0's l2: 0.12425 [151] valid_0's l2: 0.124184 [152] valid_0's l2: 0.123996 [153] valid_0's l2: 0.123928 [154] valid_0's l2: 0.123756 [155] valid_0's l2: 0.123536 [156] valid_0's l2: 0.123461 [157] valid_0's l2: 0.123334 [158] valid_0's l2: 0.123178 [159] valid_0's l2: 0.122978 [160] valid_0's l2: 0.122906 [161] valid_0's l2: 0.122794 [162] valid_0's l2: 0.122735 [163] valid_0's l2: 0.122631 [164] valid_0's l2: 0.122532 [165] valid_0's l2: 0.122428 [166] valid_0's l2: 0.122406 [167] valid_0's l2: 0.122365 [168] valid_0's l2: 0.122219 [169] valid_0's l2: 0.12221 [170] valid_0's l2: 0.122085 [171] valid_0's l2: 0.122005 [172] valid_0's l2: 0.121934 [173] valid_0's l2: 0.121767 [174] valid_0's l2: 0.121818 [175] valid_0's l2: 0.121747 [176] valid_0's l2: 0.121677 [177] valid_0's l2: 0.121591 [178] valid_0's l2: 0.121582 [179] valid_0's l2: 0.121484 [180] valid_0's l2: 0.1214 [181] valid_0's l2: 0.121248 [182] valid_0's l2: 0.12112 [183] valid_0's l2: 0.121066 [184] valid_0's l2: 0.120999 [185] valid_0's l2: 0.120897 [186] valid_0's l2: 0.120918 [187] valid_0's l2: 0.120862 [188] valid_0's l2: 0.120789 [189] valid_0's l2: 0.12073 [190] valid_0's l2: 0.120684 [191] valid_0's l2: 0.120622 [192] valid_0's l2: 0.120585 [193] valid_0's l2: 0.120482 [194] valid_0's l2: 0.12043 [195] valid_0's l2: 0.120443 [196] valid_0's l2: 0.120366 [197] valid_0's l2: 0.120223 [198] valid_0's l2: 0.120173 [199] valid_0's l2: 0.120144 [200] valid_0's l2: 0.120074 [201] valid_0's l2: 0.120014 [202] valid_0's l2: 0.119923 [203] valid_0's l2: 0.119829 [204] valid_0's l2: 0.119771 [205] valid_0's l2: 0.119675 [206] valid_0's l2: 0.11956 [207] valid_0's l2: 0.119615 [208] valid_0's l2: 0.119598 [209] valid_0's l2: 0.119612 [210] valid_0's l2: 0.119571 [211] valid_0's l2: 0.119534 [212] valid_0's l2: 0.119483 [213] valid_0's l2: 0.119477 [214] valid_0's l2: 0.119439 [215] valid_0's l2: 0.119413 [216] valid_0's l2: 0.119368 [217] valid_0's l2: 0.119304 [218] valid_0's l2: 0.119201 [219] valid_0's l2: 0.119133 [220] valid_0's l2: 0.119044 [221] valid_0's l2: 0.11902 [222] valid_0's l2: 0.118855 [223] valid_0's l2: 0.118823 [224] valid_0's l2: 0.118805 [225] valid_0's l2: 0.118776 [226] valid_0's l2: 0.118777 [227] valid_0's l2: 0.118727 [228] valid_0's l2: 0.118676 [229] valid_0's l2: 0.118682 [230] valid_0's l2: 0.118591 [231] valid_0's l2: 0.118531 [232] valid_0's l2: 0.118467 [233] valid_0's l2: 0.118464 [234] valid_0's l2: 0.118355 [235] valid_0's l2: 0.118341 [236] valid_0's l2: 0.118404 [237] valid_0's l2: 0.118371 [238] valid_0's l2: 0.118304 [239] valid_0's l2: 0.118237 [240] valid_0's l2: 0.118115 [241] valid_0's l2: 0.11802 [242] valid_0's l2: 0.118064 [243] valid_0's l2: 0.118044 [244] valid_0's l2: 0.118033 [245] valid_0's l2: 0.117901 [246] valid_0's l2: 0.117935 [247] valid_0's l2: 0.117907 [248] valid_0's l2: 0.117851 [249] valid_0's l2: 0.117779 [250] valid_0's l2: 0.117733 [251] valid_0's l2: 0.117687 [252] valid_0's l2: 0.1177 [253] valid_0's l2: 0.117634 [254] valid_0's l2: 0.117604 [255] valid_0's l2: 0.117523 [256] valid_0's l2: 0.117526 [257] valid_0's l2: 0.117537 [258] valid_0's l2: 0.117514 [259] valid_0's l2: 0.117486 [260] valid_0's l2: 0.117431 [261] valid_0's l2: 0.117423 [262] valid_0's l2: 0.117415 [263] valid_0's l2: 0.117318 [264] valid_0's l2: 0.117347 [265] valid_0's l2: 0.117354 [266] valid_0's l2: 0.117369 [267] valid_0's l2: 0.117323 [268] valid_0's l2: 0.117319 [269] valid_0's l2: 0.117312 [270] valid_0's l2: 0.117242 [271] valid_0's l2: 0.117219 [272] valid_0's l2: 0.117197 [273] valid_0's l2: 0.117206 [274] valid_0's l2: 0.117185 [275] valid_0's l2: 0.117144 [276] valid_0's l2: 0.117173 [277] valid_0's l2: 0.117149 [278] valid_0's l2: 0.117094 [279] valid_0's l2: 0.117011 [280] valid_0's l2: 0.117057 [281] valid_0's l2: 0.117051 [282] valid_0's l2: 0.11699 [283] valid_0's l2: 0.116972 [284] valid_0's l2: 0.116944 [285] valid_0's l2: 0.116927 [286] valid_0's l2: 0.116896 [287] valid_0's l2: 0.116851 [288] valid_0's l2: 0.116828 [289] valid_0's l2: 0.116835 [290] valid_0's l2: 0.116745 [291] valid_0's l2: 0.116734 [292] valid_0's l2: 0.116606 [293] valid_0's l2: 0.116575 [294] valid_0's l2: 0.116496 [295] valid_0's l2: 0.116509 [296] valid_0's l2: 0.116569 [297] valid_0's l2: 0.11651 [298] valid_0's l2: 0.116459 [299] valid_0's l2: 0.116448 [300] valid_0's l2: 0.116377 [301] valid_0's l2: 0.116332 [302] valid_0's l2: 0.116302 [303] valid_0's l2: 0.116206 [304] valid_0's l2: 0.116181 [305] valid_0's l2: 0.11621 [306] valid_0's l2: 0.116195 [307] valid_0's l2: 0.116138 [308] valid_0's l2: 0.116128 [309] valid_0's l2: 0.116061 [310] valid_0's l2: 0.116021 [311] valid_0's l2: 0.116014 [312] valid_0's l2: 0.11599 [313] valid_0's l2: 0.115987 [314] valid_0's l2: 0.115936 [315] valid_0's l2: 0.115952 [316] valid_0's l2: 0.115952 [317] valid_0's l2: 0.11591 [318] valid_0's l2: 0.115905 [319] valid_0's l2: 0.115813 [320] valid_0's l2: 0.115804 [321] valid_0's l2: 0.115803 [322] valid_0's l2: 0.115789 [323] valid_0's l2: 0.115777 [324] valid_0's l2: 0.115737 [325] valid_0's l2: 0.11575 [326] valid_0's l2: 0.115736 [327] valid_0's l2: 0.115735 [328] valid_0's l2: 0.115712 [329] valid_0's l2: 0.115731 [330] valid_0's l2: 0.115698 [331] valid_0's l2: 0.115667 [332] valid_0's l2: 0.115652 [333] valid_0's l2: 0.11564 [334] valid_0's l2: 0.115639 [335] valid_0's l2: 0.115645 [336] valid_0's l2: 0.115679 [337] valid_0's l2: 0.115679 [338] valid_0's l2: 0.115659 [339] valid_0's l2: 0.115693 [340] valid_0's l2: 0.115663 [341] valid_0's l2: 0.115645 [342] valid_0's l2: 0.115628 [343] valid_0's l2: 0.115643 [344] valid_0's l2: 0.115552 [345] valid_0's l2: 0.115512 [346] valid_0's l2: 0.115459 [347] valid_0's l2: 0.115434 [348] valid_0's l2: 0.115415 [349] valid_0's l2: 0.115389 [350] valid_0's l2: 0.115343 [351] valid_0's l2: 0.115299 [352] valid_0's l2: 0.11531 [353] valid_0's l2: 0.115358 [354] valid_0's l2: 0.115296 [355] valid_0's l2: 0.115279 [356] valid_0's l2: 0.115275 [357] valid_0's l2: 0.115236 [358] valid_0's l2: 0.115306 [359] valid_0's l2: 0.115319 [360] valid_0's l2: 0.115298 [361] valid_0's l2: 0.115298 [362] valid_0's l2: 0.115309 [363] valid_0's l2: 0.115352 [364] valid_0's l2: 0.115392 [365] valid_0's l2: 0.11543 [366] valid_0's l2: 0.115422 [367] valid_0's l2: 0.115375 Early stopping, best iteration is: [357] valid_0's l2: 0.115236 lgb now score is: [0.11464525315121991, 0.1001602219958722, 0.10375315940652878, 0.11523585238782036] [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000791 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 8848 [LightGBM] [Info] Number of data points in the train set: 2311, number of used features: 38 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.130812 [1] valid_0's l2: 0.936206 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.895841 [3] valid_0's l2: 0.857167 [4] valid_0's l2: 0.820518 [5] valid_0's l2: 0.786159 [6] valid_0's l2: 0.752506 [7] valid_0's l2: 0.721687 [8] valid_0's l2: 0.692328 [9] valid_0's l2: 0.664303 [10] valid_0's l2: 0.638598 [11] valid_0's l2: 0.613257 [12] valid_0's l2: 0.589258 [13] valid_0's l2: 0.56658 [14] valid_0's l2: 0.545071 [15] valid_0's l2: 0.524812 [16] valid_0's l2: 0.505232 [17] valid_0's l2: 0.486845 [18] valid_0's l2: 0.470246 [19] valid_0's l2: 0.453394 [20] valid_0's l2: 0.437888 [21] valid_0's l2: 0.422856 [22] valid_0's l2: 0.408857 [23] valid_0's l2: 0.395189 [24] valid_0's l2: 0.382459 [25] valid_0's l2: 0.370937 [26] valid_0's l2: 0.35901 [27] valid_0's l2: 0.347942 [28] valid_0's l2: 0.337296 [29] valid_0's l2: 0.327316 [30] valid_0's l2: 0.318055 [31] valid_0's l2: 0.308764 [32] valid_0's l2: 0.300115 [33] valid_0's l2: 0.29191 [34] valid_0's l2: 0.284227 [35] valid_0's l2: 0.276487 [36] valid_0's l2: 0.269354 [37] valid_0's l2: 0.262784 [38] valid_0's l2: 0.256853 [39] valid_0's l2: 0.250473 [40] valid_0's l2: 0.244643 [41] valid_0's l2: 0.239244 [42] valid_0's l2: 0.234111 [43] valid_0's l2: 0.229482 [44] valid_0's l2: 0.224734 [45] valid_0's l2: 0.220344 [46] valid_0's l2: 0.216184 [47] valid_0's l2: 0.212055 [48] valid_0's l2: 0.207895 [49] valid_0's l2: 0.204274 [50] valid_0's l2: 0.200657 [51] valid_0's l2: 0.197318 [52] valid_0's l2: 0.194157 [53] valid_0's l2: 0.190906 [54] valid_0's l2: 0.187951 [55] valid_0's l2: 0.184928 [56] valid_0's l2: 0.18224 [57] valid_0's l2: 0.179823 [58] valid_0's l2: 0.177306 [59] valid_0's l2: 0.17482 [60] valid_0's l2: 0.17251 [61] valid_0's l2: 0.170311 [62] valid_0's l2: 0.168198 [63] valid_0's l2: 0.166429 [64] valid_0's l2: 0.16444 [65] valid_0's l2: 0.162641 [66] valid_0's l2: 0.16089 [67] valid_0's l2: 0.15942 [68] valid_0's l2: 0.157732 [69] valid_0's l2: 0.156235 [70] valid_0's l2: 0.154809 [71] valid_0's l2: 0.153308 [72] valid_0's l2: 0.151879 [73] valid_0's l2: 0.150654 [74] valid_0's l2: 0.149304 [75] valid_0's l2: 0.148061 [76] valid_0's l2: 0.146904 [77] valid_0's l2: 0.145824 [78] valid_0's l2: 0.144673 [79] valid_0's l2: 0.143632 [80] valid_0's l2: 0.142637 [81] valid_0's l2: 0.141813 [82] valid_0's l2: 0.140874 [83] valid_0's l2: 0.140128 [84] valid_0's l2: 0.139218 [85] valid_0's l2: 0.13836 [86] valid_0's l2: 0.137665 [87] valid_0's l2: 0.136774 [88] valid_0's l2: 0.136091 [89] valid_0's l2: 0.135301 [90] valid_0's l2: 0.134483 [91] valid_0's l2: 0.133781 [92] valid_0's l2: 0.133191 [93] valid_0's l2: 0.132801 [94] valid_0's l2: 0.132071 [95] valid_0's l2: 0.131386 [96] valid_0's l2: 0.13081 [97] valid_0's l2: 0.130295 [98] valid_0's l2: 0.129822 [99] valid_0's l2: 0.129201 [100] valid_0's l2: 0.128688 [101] valid_0's l2: 0.128175 [102] valid_0's l2: 0.127658 [103] valid_0's l2: 0.127142 [104] valid_0's l2: 0.126764 [105] valid_0's l2: 0.12633 [106] valid_0's l2: 0.1259 [107] valid_0's l2: 0.125436 [108] valid_0's l2: 0.125023 [109] valid_0's l2: 0.124531 [110] valid_0's l2: 0.124266 [111] valid_0's l2: 0.124039 [112] valid_0's l2: 0.123578 [113] valid_0's l2: 0.12328 [114] valid_0's l2: 0.122965 [115] valid_0's l2: 0.122615 [116] valid_0's l2: 0.12231 [117] valid_0's l2: 0.121995 [118] valid_0's l2: 0.12178 [119] valid_0's l2: 0.121599 [120] valid_0's l2: 0.121311 [121] valid_0's l2: 0.121056 [122] valid_0's l2: 0.120772 [123] valid_0's l2: 0.120369 [124] valid_0's l2: 0.120029 [125] valid_0's l2: 0.119837 [126] valid_0's l2: 0.119627 [127] valid_0's l2: 0.119299 [128] valid_0's l2: 0.119159 [129] valid_0's l2: 0.118872 [130] valid_0's l2: 0.118819 [131] valid_0's l2: 0.118669 [132] valid_0's l2: 0.118404 [133] valid_0's l2: 0.118245 [134] valid_0's l2: 0.118092 [135] valid_0's l2: 0.117967 [136] valid_0's l2: 0.117839 [137] valid_0's l2: 0.117458 [138] valid_0's l2: 0.11716 [139] valid_0's l2: 0.116996 [140] valid_0's l2: 0.11679 [141] valid_0's l2: 0.116548 [142] valid_0's l2: 0.116298 [143] valid_0's l2: 0.116123 [144] valid_0's l2: 0.116018 [145] valid_0's l2: 0.115965 [146] valid_0's l2: 0.115854 [147] valid_0's l2: 0.115679 [148] valid_0's l2: 0.115415 [149] valid_0's l2: 0.115337 [150] valid_0's l2: 0.11512 [151] valid_0's l2: 0.115015 [152] valid_0's l2: 0.114857 [153] valid_0's l2: 0.114625 [154] valid_0's l2: 0.114484 [155] valid_0's l2: 0.114351 [156] valid_0's l2: 0.114251 [157] valid_0's l2: 0.114188 [158] valid_0's l2: 0.113966 [159] valid_0's l2: 0.113816 [160] valid_0's l2: 0.113629 [161] valid_0's l2: 0.113567 [162] valid_0's l2: 0.113474 [163] valid_0's l2: 0.113372 [164] valid_0's l2: 0.113188 [165] valid_0's l2: 0.113099 [166] valid_0's l2: 0.11293 [167] valid_0's l2: 0.112879 [168] valid_0's l2: 0.112909 [169] valid_0's l2: 0.112728 [170] valid_0's l2: 0.112666 [171] valid_0's l2: 0.112566 [172] valid_0's l2: 0.11255 [173] valid_0's l2: 0.112469 [174] valid_0's l2: 0.112368 [175] valid_0's l2: 0.112383 [176] valid_0's l2: 0.112212 [177] valid_0's l2: 0.112214 [178] valid_0's l2: 0.112292 [179] valid_0's l2: 0.11215 [180] valid_0's l2: 0.112031 [181] valid_0's l2: 0.111966 [182] valid_0's l2: 0.112036 [183] valid_0's l2: 0.111839 [184] valid_0's l2: 0.111743 [185] valid_0's l2: 0.11162 [186] valid_0's l2: 0.11155 [187] valid_0's l2: 0.11144 [188] valid_0's l2: 0.111387 [189] valid_0's l2: 0.11135 [190] valid_0's l2: 0.111384 [191] valid_0's l2: 0.111317 [192] valid_0's l2: 0.111246 [193] valid_0's l2: 0.111207 [194] valid_0's l2: 0.111208 [195] valid_0's l2: 0.111178 [196] valid_0's l2: 0.111088 [197] valid_0's l2: 0.110978 [198] valid_0's l2: 0.110861 [199] valid_0's l2: 0.110857 [200] valid_0's l2: 0.110852 [201] valid_0's l2: 0.110765 [202] valid_0's l2: 0.110762 [203] valid_0's l2: 0.11076 [204] valid_0's l2: 0.110639 [205] valid_0's l2: 0.110585 [206] valid_0's l2: 0.110508 [207] valid_0's l2: 0.110447 [208] valid_0's l2: 0.110415 [209] valid_0's l2: 0.110324 [210] valid_0's l2: 0.110356 [211] valid_0's l2: 0.110303 [212] valid_0's l2: 0.110307 [213] valid_0's l2: 0.110288 [214] valid_0's l2: 0.110188 [215] valid_0's l2: 0.110091 [216] valid_0's l2: 0.110052 [217] valid_0's l2: 0.109953 [218] valid_0's l2: 0.109941 [219] valid_0's l2: 0.109894 [220] valid_0's l2: 0.109813 [221] valid_0's l2: 0.10971 [222] valid_0's l2: 0.10966 [223] valid_0's l2: 0.109711 [224] valid_0's l2: 0.109603 [225] valid_0's l2: 0.109622 [226] valid_0's l2: 0.109553 [227] valid_0's l2: 0.10954 [228] valid_0's l2: 0.109503 [229] valid_0's l2: 0.1094 [230] valid_0's l2: 0.109398 [231] valid_0's l2: 0.109377 [232] valid_0's l2: 0.109411 [233] valid_0's l2: 0.109335 [234] valid_0's l2: 0.109301 [235] valid_0's l2: 0.109261 [236] valid_0's l2: 0.109191 [237] valid_0's l2: 0.109043 [238] valid_0's l2: 0.10901 [239] valid_0's l2: 0.108991 [240] valid_0's l2: 0.109039 [241] valid_0's l2: 0.108958 [242] valid_0's l2: 0.108935 [243] valid_0's l2: 0.10891 [244] valid_0's l2: 0.108871 [245] valid_0's l2: 0.108813 [246] valid_0's l2: 0.108771 [247] valid_0's l2: 0.108763 [248] valid_0's l2: 0.108667 [249] valid_0's l2: 0.108628 [250] valid_0's l2: 0.108674 [251] valid_0's l2: 0.10863 [252] valid_0's l2: 0.108624 [253] valid_0's l2: 0.108566 [254] valid_0's l2: 0.108488 [255] valid_0's l2: 0.108443 [256] valid_0's l2: 0.108413 [257] valid_0's l2: 0.108392 [258] valid_0's l2: 0.108343 [259] valid_0's l2: 0.10836 [260] valid_0's l2: 0.108346 [261] valid_0's l2: 0.108361 [262] valid_0's l2: 0.108367 [263] valid_0's l2: 0.108289 [264] valid_0's l2: 0.108259 [265] valid_0's l2: 0.108212 [266] valid_0's l2: 0.108262 [267] valid_0's l2: 0.10822 [268] valid_0's l2: 0.108101 [269] valid_0's l2: 0.108019 [270] valid_0's l2: 0.108008 [271] valid_0's l2: 0.107976 [272] valid_0's l2: 0.108033 [273] valid_0's l2: 0.107989 [274] valid_0's l2: 0.107926 [275] valid_0's l2: 0.107947 [276] valid_0's l2: 0.107964 [277] valid_0's l2: 0.107889 [278] valid_0's l2: 0.107856 [279] valid_0's l2: 0.107835 [280] valid_0's l2: 0.107718 [281] valid_0's l2: 0.107649 [282] valid_0's l2: 0.107641 [283] valid_0's l2: 0.107624 [284] valid_0's l2: 0.107612 [285] valid_0's l2: 0.1076 [286] valid_0's l2: 0.10755 [287] valid_0's l2: 0.107525 [288] valid_0's l2: 0.107403 [289] valid_0's l2: 0.107386 [290] valid_0's l2: 0.107421 [291] valid_0's l2: 0.107425 [292] valid_0's l2: 0.107383 [293] valid_0's l2: 0.107328 [294] valid_0's l2: 0.107313 [295] valid_0's l2: 0.107297 [296] valid_0's l2: 0.107275 [297] valid_0's l2: 0.107286 [298] valid_0's l2: 0.107273 [299] valid_0's l2: 0.107216 [300] valid_0's l2: 0.107143 [301] valid_0's l2: 0.107092 [302] valid_0's l2: 0.107074 [303] valid_0's l2: 0.107119 [304] valid_0's l2: 0.107051 [305] valid_0's l2: 0.107027 [306] valid_0's l2: 0.106993 [307] valid_0's l2: 0.106946 [308] valid_0's l2: 0.106894 [309] valid_0's l2: 0.10686 [310] valid_0's l2: 0.106841 [311] valid_0's l2: 0.106812 [312] valid_0's l2: 0.106788 [313] valid_0's l2: 0.106774 [314] valid_0's l2: 0.106784 [315] valid_0's l2: 0.106725 [316] valid_0's l2: 0.106675 [317] valid_0's l2: 0.106631 [318] valid_0's l2: 0.106652 [319] valid_0's l2: 0.106643 [320] valid_0's l2: 0.106649 [321] valid_0's l2: 0.106614 [322] valid_0's l2: 0.106688 [323] valid_0's l2: 0.106714 [324] valid_0's l2: 0.106738 [325] valid_0's l2: 0.106739 [326] valid_0's l2: 0.106729 [327] valid_0's l2: 0.10675 [328] valid_0's l2: 0.106749 [329] valid_0's l2: 0.106699 [330] valid_0's l2: 0.106733 [331] valid_0's l2: 0.106719 Early stopping, best iteration is: [321] valid_0's l2: 0.106614 lgb now score is: [0.11464525315121991, 0.1001602219958722, 0.10375315940652878, 0.11523585238782036, 0.10661431579572031] lgb_score_list: [0.11464525315121991, 0.1001602219958722, 0.10375315940652878, 0.11523585238782036, 0.10661431579572031] lgb_score_mean: 0.1080817605474323 (2888, 38) (2888, 39) lgb_reg False lgb_reg [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000872 seconds. You can set `force_col_wise=true` to remove the overhead. [LightGBM] [Info] Total Bins 9126 [LightGBM] [Info] Number of data points in the train set: 2888, number of used features: 39 [LightGBM] [Warning] Unknown parameter: tree_method [LightGBM] [Warning] Unknown parameter: colsample_bylevel [LightGBM] [Warning] Unknown parameter: silent [LightGBM] [Info] Start training from score 0.126353 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [1] valid_0's l2: 0.920198 Training until validation scores don't improve for 10 rounds [2] valid_0's l2: 0.877501 [3] valid_0's l2: 0.837096 [4] valid_0's l2: 0.796634 [5] valid_0's l2: 0.760988 [6] valid_0's l2: 0.726895 [7] valid_0's l2: 0.692514 [LightGBM] [Warning] No further splits with positive gain, best gain: -inf [8] valid_0's l2: 0.66003 [9] valid_0's l2: 0.629321 [10] valid_0's l2: 0.600303 [11] valid_0's l2: 0.574484 [12] valid_0's l2: 0.550053 [13] valid_0's l2: 0.525398 [14] valid_0's l2: 0.503693 [15] valid_0's l2: 0.481571 [16] valid_0's l2: 0.460633 [17] valid_0's l2: 0.440842 [18] valid_0's l2: 0.422154 [19] valid_0's l2: 0.405527 [20] valid_0's l2: 0.388729 [21] valid_0's l2: 0.372852 [22] valid_0's l2: 0.358731 [23] valid_0's l2: 0.344477 [24] valid_0's l2: 0.331865 [25] valid_0's l2: 0.320117 [26] valid_0's l2: 0.30877 [27] valid_0's l2: 0.297215 [28] valid_0's l2: 0.286285 [29] valid_0's l2: 0.276795 [30] valid_0's l2: 0.266987 [31] valid_0's l2: 0.257675 [32] valid_0's l2: 0.248847 [33] valid_0's l2: 0.240504 [34] valid_0's l2: 0.23261 [35] valid_0's l2: 0.225159 [36] valid_0's l2: 0.21812 [37] valid_0's l2: 0.211375 [38] valid_0's l2: 0.205017 [39] valid_0's l2: 0.199026 [40] valid_0's l2: 0.193628 [41] valid_0's l2: 0.188137 [42] valid_0's l2: 0.183008 [43] valid_0's l2: 0.178142 [44] valid_0's l2: 0.173445 [45] valid_0's l2: 0.169077 [46] valid_0's l2: 0.165068 [47] valid_0's l2: 0.161044 [48] valid_0's l2: 0.157256 [49] valid_0's l2: 0.153645 [50] valid_0's l2: 0.150257 [51] valid_0's l2: 0.146919 [52] valid_0's l2: 0.143854 [53] valid_0's l2: 0.140868 [54] valid_0's l2: 0.137998 [55] valid_0's l2: 0.135382 [56] valid_0's l2: 0.132761 [57] valid_0's l2: 0.130272 [58] valid_0's l2: 0.12792 [59] valid_0's l2: 0.125694 [60] valid_0's l2: 0.123562 [61] valid_0's l2: 0.12158 [62] valid_0's l2: 0.119611 [63] valid_0's l2: 0.117707 [64] valid_0's l2: 0.115863 [65] valid_0's l2: 0.114163 [66] valid_0's l2: 0.112492 [67] valid_0's l2: 0.110916 [68] valid_0's l2: 0.109392 [69] valid_0's l2: 0.107826 [70] valid_0's l2: 0.106362 [71] valid_0's l2: 0.10497 [72] valid_0's l2: 0.103623 [73] valid_0's l2: 0.10234 [74] valid_0's l2: 0.101078 [75] valid_0's l2: 0.0998728 [76] valid_0's l2: 0.0987565 [77] valid_0's l2: 0.0976769 [78] valid_0's l2: 0.0966 [79] valid_0's l2: 0.0956068 [80] valid_0's l2: 0.0946104 [81] valid_0's l2: 0.093656 [82] valid_0's l2: 0.0926436 [83] valid_0's l2: 0.0917123 [84] valid_0's l2: 0.090806 [85] valid_0's l2: 0.0899506 [86] valid_0's l2: 0.0891238 [87] valid_0's l2: 0.0883361 [88] valid_0's l2: 0.0875694 [89] valid_0's l2: 0.0868473 [90] valid_0's l2: 0.0860895 [91] valid_0's l2: 0.0853649 [92] valid_0's l2: 0.0846328 [93] valid_0's l2: 0.0838801 [94] valid_0's l2: 0.0832734 [95] valid_0's l2: 0.082608 [96] valid_0's l2: 0.0819408 [97] valid_0's l2: 0.0813099 [98] valid_0's l2: 0.0807066 [99] valid_0's l2: 0.0800998 [100] valid_0's l2: 0.079549 [101] valid_0's l2: 0.0789841 [102] valid_0's l2: 0.0784413 [103] valid_0's l2: 0.0778946 [104] valid_0's l2: 0.0773375 [105] valid_0's l2: 0.076757 [106] valid_0's l2: 0.076234 [107] valid_0's l2: 0.0757108 [108] valid_0's l2: 0.0752375 [109] valid_0's l2: 0.0747273 [110] valid_0's l2: 0.0742649 [111] valid_0's l2: 0.0737894 [112] valid_0's l2: 0.0733377 [113] valid_0's l2: 0.0728907 [114] valid_0's l2: 0.0724813 [115] valid_0's l2: 0.0720514 [116] valid_0's l2: 0.0716235 [117] valid_0's l2: 0.0712518 [118] valid_0's l2: 0.0708029 [119] valid_0's l2: 0.0703807 [120] valid_0's l2: 0.0699569 [121] valid_0's l2: 0.0695757 [122] valid_0's l2: 0.069188 [123] valid_0's l2: 0.0688301 [124] valid_0's l2: 0.0684313 [125] valid_0's l2: 0.0680283 [126] valid_0's l2: 0.0676548 [127] valid_0's l2: 0.0672451 [128] valid_0's l2: 0.0668647 [129] valid_0's l2: 0.0664871 [130] valid_0's l2: 0.0661413 [131] valid_0's l2: 0.065796 [132] valid_0's l2: 0.0654315 [133] valid_0's l2: 0.0650831 [134] valid_0's l2: 0.0647244 [135] valid_0's l2: 0.0643841 [136] valid_0's l2: 0.0640391 [137] valid_0's l2: 0.0637384 [138] valid_0's l2: 0.0634262 [139] valid_0's l2: 0.0631044 [140] valid_0's l2: 0.062778 [141] valid_0's l2: 0.0624782 [142] valid_0's l2: 0.0621561 [143] valid_0's l2: 0.0618215 [144] valid_0's l2: 0.0615053 [145] valid_0's l2: 0.0611636 [146] valid_0's l2: 0.0608256 [147] valid_0's l2: 0.0605239 [148] valid_0's l2: 0.0602332 [149] valid_0's l2: 0.05994 [150] valid_0's l2: 0.0596534 [151] valid_0's l2: 0.0593666 [152] valid_0's l2: 0.0590838 [153] valid_0's l2: 0.0588218 [154] valid_0's l2: 0.0585661 [155] valid_0's l2: 0.0582825 [156] valid_0's l2: 0.0580247 [157] valid_0's l2: 0.0577481 [158] valid_0's l2: 0.0574347 [159] valid_0's l2: 0.0571654 [160] valid_0's l2: 0.0568895 [161] valid_0's l2: 0.0566506 [162] valid_0's l2: 0.05642 [163] valid_0's l2: 0.0561828 [164] valid_0's l2: 0.0559371 [165] valid_0's l2: 0.0557143 [166] valid_0's l2: 0.0554341 [167] valid_0's l2: 0.0552245 [168] valid_0's l2: 0.0549674 [169] valid_0's l2: 0.0547357 [170] valid_0's l2: 0.0544524 [171] valid_0's l2: 0.0541773 [172] valid_0's l2: 0.0539216 [173] valid_0's l2: 0.0536876 [174] valid_0's l2: 0.0534448 [175] valid_0's l2: 0.0532163 [176] valid_0's l2: 0.0529931 [177] valid_0's l2: 0.0527497 [178] valid_0's l2: 0.0525413 [179] valid_0's l2: 0.0523342 [180] valid_0's l2: 0.0520939 [181] valid_0's l2: 0.0518482 [182] valid_0's l2: 0.0515886 [183] valid_0's l2: 0.0513792 [184] valid_0's l2: 0.0511629 [185] valid_0's l2: 0.050926 [186] valid_0's l2: 0.0507362 [187] valid_0's l2: 0.0505168 [188] valid_0's l2: 0.0503015 [189] valid_0's l2: 0.0501021 [190] valid_0's l2: 0.0498635 [191] valid_0's l2: 0.0496362 [192] valid_0's l2: 0.0494557 [193] valid_0's l2: 0.0492321 [194] valid_0's l2: 0.0490165 [195] valid_0's l2: 0.0488094 [196] valid_0's l2: 0.0486346 [197] valid_0's l2: 0.0484021 [198] valid_0's l2: 0.0482034 [199] valid_0's l2: 0.0480083 [200] valid_0's l2: 0.0478169 [201] valid_0's l2: 0.047626 [202] valid_0's l2: 0.0474026 [203] valid_0's l2: 0.0472183 [204] valid_0's l2: 0.046995 [205] valid_0's l2: 0.0467757 [206] valid_0's l2: 0.0465913 [207] valid_0's l2: 0.0463583 [208] valid_0's l2: 0.04615 [209] valid_0's l2: 0.0459667 [210] valid_0's l2: 0.0457877 [211] valid_0's l2: 0.0455888 [212] valid_0's l2: 0.0454067 [213] valid_0's l2: 0.0452036 [214] valid_0's l2: 0.0450257 [215] valid_0's l2: 0.0448604 [216] valid_0's l2: 0.044662 [217] valid_0's l2: 0.0444738 [218] valid_0's l2: 0.0443127 [219] valid_0's l2: 0.0441101 [220] valid_0's l2: 0.0439273 [221] valid_0's l2: 0.043749 [222] valid_0's l2: 0.0435535 [223] valid_0's l2: 0.0434021 [224] valid_0's l2: 0.0432227 [225] valid_0's l2: 0.043051 [226] valid_0's l2: 0.0428982 [227] valid_0's l2: 0.0427408 [228] valid_0's l2: 0.0425735 [229] valid_0's l2: 0.0424031 [230] valid_0's l2: 0.0422558 [231] valid_0's l2: 0.0420839 [232] valid_0's l2: 0.0419328 [233] valid_0's l2: 0.0417914 [234] valid_0's l2: 0.041622 [235] valid_0's l2: 0.0414701 [236] valid_0's l2: 0.0412914 [237] valid_0's l2: 0.0411226 [238] valid_0's l2: 0.0409581 [239] valid_0's l2: 0.0407911 [240] valid_0's l2: 0.0406334 [241] valid_0's l2: 0.0404966 [242] valid_0's l2: 0.0403621 [243] valid_0's l2: 0.0402119 [244] valid_0's l2: 0.0400429 [245] valid_0's l2: 0.039876 [246] valid_0's l2: 0.0397355 [247] valid_0's l2: 0.0395668 [248] valid_0's l2: 0.0394274 [249] valid_0's l2: 0.0392655 [250] valid_0's l2: 0.0391132 [251] valid_0's l2: 0.0389681 [252] valid_0's l2: 0.0388175 [253] valid_0's l2: 0.0386789 [254] valid_0's l2: 0.0385332 [255] valid_0's l2: 0.0383852 [256] valid_0's l2: 0.0382532 [257] valid_0's l2: 0.0380884 [258] valid_0's l2: 0.037932 [259] valid_0's l2: 0.0377994 [260] valid_0's l2: 0.0376666 [261] valid_0's l2: 0.0375289 [262] valid_0's l2: 0.0373884 [263] valid_0's l2: 0.0372284 [264] valid_0's l2: 0.0370883 [265] valid_0's l2: 0.0369467 [266] valid_0's l2: 0.0367985 [267] valid_0's l2: 0.0366672 [268] valid_0's l2: 0.0365261 [269] valid_0's l2: 0.0364001 [270] valid_0's l2: 0.0362617 [271] valid_0's l2: 0.03614 [272] valid_0's l2: 0.0359984 [273] valid_0's l2: 0.0358566 [274] valid_0's l2: 0.0357353 [275] valid_0's l2: 0.0356 [276] valid_0's l2: 0.0354529 [277] valid_0's l2: 0.0353143 [278] valid_0's l2: 0.0351655 [279] valid_0's l2: 0.0350389 [280] valid_0's l2: 0.0349027 [281] valid_0's l2: 0.0347735 [282] valid_0's l2: 0.034644 [283] valid_0's l2: 0.0345016 [284] valid_0's l2: 0.0343841 [285] valid_0's l2: 0.0342532 [286] valid_0's l2: 0.0341224 [287] valid_0's l2: 0.0339967 [288] valid_0's l2: 0.0338592 [289] valid_0's l2: 0.0337322 [290] valid_0's l2: 0.0336135 [291] valid_0's l2: 0.0334987 [292] valid_0's l2: 0.0333646 [293] valid_0's l2: 0.0332563 [294] valid_0's l2: 0.0331167 [295] valid_0's l2: 0.0330035 [296] valid_0's l2: 0.0328742 [297] valid_0's l2: 0.0327561 [298] valid_0's l2: 0.0326382 [299] valid_0's l2: 0.0325294 [300] valid_0's l2: 0.0324194 [301] valid_0's l2: 0.0323175 [302] valid_0's l2: 0.0321924 [303] valid_0's l2: 0.0320636 [304] valid_0's l2: 0.0319467 [305] valid_0's l2: 0.0317993 [306] valid_0's l2: 0.0316835 [307] valid_0's l2: 0.0315738 [308] valid_0's l2: 0.0314605 [309] valid_0's l2: 0.0313546 [310] valid_0's l2: 0.0312225 [311] valid_0's l2: 0.0311004 [312] valid_0's l2: 0.0309879 [313] valid_0's l2: 0.0308794 [314] valid_0's l2: 0.0307566 [315] valid_0's l2: 0.0306497 [316] valid_0's l2: 0.0305359 [317] valid_0's l2: 0.0304253 [318] valid_0's l2: 0.0303187 [319] valid_0's l2: 0.0302078 [320] valid_0's l2: 0.0300841 [321] valid_0's l2: 0.0299782 [322] valid_0's l2: 0.0298677 [323] valid_0's l2: 0.0297692 [324] valid_0's l2: 0.0296543 [325] valid_0's l2: 0.0295466 [326] valid_0's l2: 0.0294533 [327] valid_0's l2: 0.0293471 [328] valid_0's l2: 0.0292263 [329] valid_0's l2: 0.0291237 [330] valid_0's l2: 0.029026 [331] valid_0's l2: 0.028925 [332] valid_0's l2: 0.0288194 [333] valid_0's l2: 0.0287153 [334] valid_0's l2: 0.0286177 [335] valid_0's l2: 0.0285273 [336] valid_0's l2: 0.0284344 [337] valid_0's l2: 0.028326 [338] valid_0's l2: 0.0282405 [339] valid_0's l2: 0.0281493 [340] valid_0's l2: 0.0280444 [341] valid_0's l2: 0.0279395 [342] valid_0's l2: 0.0278497 [343] valid_0's l2: 0.0277544 [344] valid_0's l2: 0.0276564 [345] valid_0's l2: 0.027556 [346] valid_0's l2: 0.0274631 [347] valid_0's l2: 0.0273584 [348] valid_0's l2: 0.0272571 [349] valid_0's l2: 0.0271598 [350] valid_0's l2: 0.0270661 [351] valid_0's l2: 0.0269656 [352] valid_0's l2: 0.026872 [353] valid_0's l2: 0.0267654 [354] valid_0's l2: 0.026683 [355] valid_0's l2: 0.0265876 [356] valid_0's l2: 0.0265064 [357] valid_0's l2: 0.0264206 [358] valid_0's l2: 0.0263261 [359] valid_0's l2: 0.0262268 [360] valid_0's l2: 0.0261385 [361] valid_0's l2: 0.0260491 [362] valid_0's l2: 0.0259586 [363] valid_0's l2: 0.0258718 [364] valid_0's l2: 0.0257845 [365] valid_0's l2: 0.025698 [366] valid_0's l2: 0.0256091 [367] valid_0's l2: 0.0255066 [368] valid_0's l2: 0.025414 [369] valid_0's l2: 0.0253178 [370] valid_0's l2: 0.0252268 [371] valid_0's l2: 0.0251415 [372] valid_0's l2: 0.0250536 [373] valid_0's l2: 0.0249656 [374] valid_0's l2: 0.0248922 [375] valid_0's l2: 0.0248076 [376] valid_0's l2: 0.0247133 [377] valid_0's l2: 0.0246336 [378] valid_0's l2: 0.0245543 [379] valid_0's l2: 0.024463 [380] valid_0's l2: 0.0243908 [381] valid_0's l2: 0.0243089 [382] valid_0's l2: 0.0242223 [383] valid_0's l2: 0.0241504 [384] valid_0's l2: 0.0240773 [385] valid_0's l2: 0.0239832 [386] valid_0's l2: 0.0238987 [387] valid_0's l2: 0.0238124 [388] valid_0's l2: 0.0237279 [389] valid_0's l2: 0.0236464 [390] valid_0's l2: 0.0235599 [391] valid_0's l2: 0.0234739 [392] valid_0's l2: 0.0233941 [393] valid_0's l2: 0.0233051 [394] valid_0's l2: 0.0232125 [395] valid_0's l2: 0.0231359 [396] valid_0's l2: 0.0230624 [397] valid_0's l2: 0.0229959 [398] valid_0's l2: 0.0229201 [399] valid_0's l2: 0.0228434 [400] valid_0's l2: 0.0227616 [401] valid_0's l2: 0.0226815 [402] valid_0's l2: 0.022607 [403] valid_0's l2: 0.0225342 [404] valid_0's l2: 0.0224529 [405] valid_0's l2: 0.0223827 [406] valid_0's l2: 0.0223098 [407] valid_0's l2: 0.022241 [408] valid_0's l2: 0.0221678 [409] valid_0's l2: 0.0220848 [410] valid_0's l2: 0.0220053 [411] valid_0's l2: 0.0219357 [412] valid_0's l2: 0.0218662 [413] valid_0's l2: 0.0217852 [414] valid_0's l2: 0.0217066 [415] valid_0's l2: 0.0216262 [416] valid_0's l2: 0.0215557 [417] valid_0's l2: 0.0214884 [418] valid_0's l2: 0.0214134 [419] valid_0's l2: 0.0213336 [420] valid_0's l2: 0.0212735 [421] valid_0's l2: 0.0212104 [422] valid_0's l2: 0.0211432 [423] valid_0's l2: 0.021079 [424] valid_0's l2: 0.0210032 [425] valid_0's l2: 0.0209392 [426] valid_0's l2: 0.0208721 [427] valid_0's l2: 0.0208122 [428] valid_0's l2: 0.0207427 [429] valid_0's l2: 0.0206784 [430] valid_0's l2: 0.0205995 [431] valid_0's l2: 0.0205368 [432] valid_0's l2: 0.0204694 [433] valid_0's l2: 0.0204004 [434] valid_0's l2: 0.0203348 [435] valid_0's l2: 0.0202709 [436] valid_0's l2: 0.0202165 [437] valid_0's l2: 0.0201513 [438] valid_0's l2: 0.0200816 [439] valid_0's l2: 0.02002 [440] valid_0's l2: 0.0199487 [441] valid_0's l2: 0.019885 [442] valid_0's l2: 0.0198272 [443] valid_0's l2: 0.0197579 [444] valid_0's l2: 0.0196982 [445] valid_0's l2: 0.0196292 [446] valid_0's l2: 0.0195708 [447] valid_0's l2: 0.0195081 [448] valid_0's l2: 0.0194422 [449] valid_0's l2: 0.0193768 [450] valid_0's l2: 0.0193136 [451] valid_0's l2: 0.0192471 [452] valid_0's l2: 0.0191747 [453] valid_0's l2: 0.0191124 [454] valid_0's l2: 0.0190483 [455] valid_0's l2: 0.0189932 [456] valid_0's l2: 0.0189274 [457] valid_0's l2: 0.0188666 [458] valid_0's l2: 0.0188057 [459] valid_0's l2: 0.0187468 [460] valid_0's l2: 0.0186874 [461] valid_0's l2: 0.0186373 [462] valid_0's l2: 0.0185759 [463] valid_0's l2: 0.0185127 [464] valid_0's l2: 0.0184518 [465] valid_0's l2: 0.0183863 [466] valid_0's l2: 0.0183335 [467] valid_0's l2: 0.0182767 [468] valid_0's l2: 0.0182227 [469] valid_0's l2: 0.0181616 [470] valid_0's l2: 0.0181034 [471] valid_0's l2: 0.0180449 [472] valid_0's l2: 0.0179857 [473] valid_0's l2: 0.0179243 [474] valid_0's l2: 0.017864 [475] valid_0's l2: 0.017811 [476] valid_0's l2: 0.0177563 [477] valid_0's l2: 0.0176983 [478] valid_0's l2: 0.0176437 [479] valid_0's l2: 0.017594 [480] valid_0's l2: 0.0175356 [481] valid_0's l2: 0.0174881 [482] valid_0's l2: 0.0174288 [483] valid_0's l2: 0.017371 [484] valid_0's l2: 0.0173169 [485] valid_0's l2: 0.0172679 [486] valid_0's l2: 0.017213 [487] valid_0's l2: 0.0171669 [488] valid_0's l2: 0.0171131 [489] valid_0's l2: 0.017055 [490] valid_0's l2: 0.0169895 [491] valid_0's l2: 0.0169398 [492] valid_0's l2: 0.0168845 [493] valid_0's l2: 0.0168276 [494] valid_0's l2: 0.0167689 [495] valid_0's l2: 0.0167261 [496] valid_0's l2: 0.0166614 [497] valid_0's l2: 0.0166035 [498] valid_0's l2: 0.0165538 [499] valid_0's l2: 0.0164969 [500] valid_0's l2: 0.0164417 [501] valid_0's l2: 0.016396 [502] valid_0's l2: 0.016347 [503] valid_0's l2: 0.016293 [504] valid_0's l2: 0.0162467 [505] valid_0's l2: 0.0161936 [506] valid_0's l2: 0.0161354 [507] valid_0's l2: 0.0160856 [508] valid_0's l2: 0.0160306 [509] valid_0's l2: 0.0159787 [510] valid_0's l2: 0.0159252 [511] valid_0's l2: 0.015869 [512] valid_0's l2: 0.0158201 [513] valid_0's l2: 0.0157738 [514] valid_0's l2: 0.0157277 [515] valid_0's l2: 0.0156685 [516] valid_0's l2: 0.0156203 [517] valid_0's l2: 0.0155731 [518] valid_0's l2: 0.0155216 [519] valid_0's l2: 0.0154731 [520] valid_0's l2: 0.0154257 [521] valid_0's l2: 0.0153855 [522] valid_0's l2: 0.0153433 [523] valid_0's l2: 0.0152947 [524] valid_0's l2: 0.0152412 [525] valid_0's l2: 0.0151917 [526] valid_0's l2: 0.0151513 [527] valid_0's l2: 0.0151026 [528] valid_0's l2: 0.0150631 [529] valid_0's l2: 0.0150194 [530] valid_0's l2: 0.0149765 [531] valid_0's l2: 0.0149336 [532] valid_0's l2: 0.0148831 [533] valid_0's l2: 0.014834 [534] valid_0's l2: 0.0147868 [535] valid_0's l2: 0.0147363 [536] valid_0's l2: 0.0146885 [537] valid_0's l2: 0.014646 [538] valid_0's l2: 0.0145951 [539] valid_0's l2: 0.0145546 [540] valid_0's l2: 0.0145084 [541] valid_0's l2: 0.0144638 [542] valid_0's l2: 0.0144179 [543] valid_0's l2: 0.0143723 [544] valid_0's l2: 0.0143271 [545] valid_0's l2: 0.0142815 [546] valid_0's l2: 0.0142391 [547] valid_0's l2: 0.0141955 [548] valid_0's l2: 0.0141514 [549] valid_0's l2: 0.0141118 [550] valid_0's l2: 0.0140631 [551] valid_0's l2: 0.0140253 [552] valid_0's l2: 0.0139813 [553] valid_0's l2: 0.0139389 [554] valid_0's l2: 0.0138994 [555] valid_0's l2: 0.013859 [556] valid_0's l2: 0.0138089 [557] valid_0's l2: 0.0137652 [558] valid_0's l2: 0.0137244 [559] valid_0's l2: 0.013682 [560] valid_0's l2: 0.013642 [561] valid_0's l2: 0.0135916 [562] valid_0's l2: 0.0135578 [563] valid_0's l2: 0.0135169 [564] valid_0's l2: 0.0134765 [565] valid_0's l2: 0.013426 [566] valid_0's l2: 0.0133852 [567] valid_0's l2: 0.01334 [568] valid_0's l2: 0.013302 [569] valid_0's l2: 0.0132602 [570] valid_0's l2: 0.013221 [571] valid_0's l2: 0.0131795 [572] valid_0's l2: 0.0131393 [573] valid_0's l2: 0.0131015 [574] valid_0's l2: 0.0130655 [575] valid_0's l2: 0.0130266 [576] valid_0's l2: 0.0129882 [577] valid_0's l2: 0.0129407 [578] valid_0's l2: 0.0129036 [579] valid_0's l2: 0.0128704 [580] valid_0's l2: 0.01283 [581] valid_0's l2: 0.0127951 [582] valid_0's l2: 0.0127581 [583] valid_0's l2: 0.0127225 [584] valid_0's l2: 0.0126852 [585] valid_0's l2: 0.0126508 [586] valid_0's l2: 0.0126157 [587] valid_0's l2: 0.0125778 [588] valid_0's l2: 0.0125396 [589] valid_0's l2: 0.0125093 [590] valid_0's l2: 0.0124753 [591] valid_0's l2: 0.0124364 [592] valid_0's l2: 0.0123992 [593] valid_0's l2: 0.0123644 [594] valid_0's l2: 0.012324 [595] valid_0's l2: 0.0122882 [596] valid_0's l2: 0.012247 [597] valid_0's l2: 0.0122074 [598] valid_0's l2: 0.0121702 [599] valid_0's l2: 0.0121326 [600] valid_0's l2: 0.0120962 [601] valid_0's l2: 0.0120611 [602] valid_0's l2: 0.0120274 [603] valid_0's l2: 0.0119917 [604] valid_0's l2: 0.0119589 [605] valid_0's l2: 0.0119258 [606] valid_0's l2: 0.01189 [607] valid_0's l2: 0.0118473 [608] valid_0's l2: 0.0118075 [609] valid_0's l2: 0.0117714 [610] valid_0's l2: 0.0117349 [611] valid_0's l2: 0.0117024 [612] valid_0's l2: 0.0116726 [613] valid_0's l2: 0.0116377 [614] valid_0's l2: 0.0116028 [615] valid_0's l2: 0.011567 [616] valid_0's l2: 0.011533 [617] valid_0's l2: 0.011501 [618] valid_0's l2: 0.0114642 [619] valid_0's l2: 0.0114297 [620] valid_0's l2: 0.0113969 [621] valid_0's l2: 0.011357 [622] valid_0's l2: 0.0113201 [623] valid_0's l2: 0.0112868 [624] valid_0's l2: 0.011254 [625] valid_0's l2: 0.011224 [626] valid_0's l2: 0.011191 [627] valid_0's l2: 0.0111522 [628] valid_0's l2: 0.011113 [629] valid_0's l2: 0.0110821 [630] valid_0's l2: 0.0110482 [631] valid_0's l2: 0.0110084 [632] valid_0's l2: 0.0109698 [633] valid_0's l2: 0.0109339 [634] valid_0's l2: 0.0109028 [635] valid_0's l2: 0.0108721 [636] valid_0's l2: 0.0108381 [637] valid_0's l2: 0.0108081 [638] valid_0's l2: 0.0107805 [639] valid_0's l2: 0.0107546 [640] valid_0's l2: 0.0107213 [641] valid_0's l2: 0.0106916 [642] valid_0's l2: 0.01066 [643] valid_0's l2: 0.0106281 [644] valid_0's l2: 0.0105954 [645] valid_0's l2: 0.0105681 [646] valid_0's l2: 0.0105409 [647] valid_0's l2: 0.0105041 [648] valid_0's l2: 0.0104694 [649] valid_0's l2: 0.010437 [650] valid_0's l2: 0.0104062 [651] valid_0's l2: 0.0103761 [652] valid_0's l2: 0.0103435 [653] valid_0's l2: 0.0103075 [654] valid_0's l2: 0.0102794 [655] valid_0's l2: 0.0102512 [656] valid_0's l2: 0.0102219 [657] valid_0's l2: 0.0101965 [658] valid_0's l2: 0.0101652 [659] valid_0's l2: 0.0101386 [660] valid_0's l2: 0.0101061 [661] valid_0's l2: 0.0100746 [662] valid_0's l2: 0.0100489 [663] valid_0's l2: 0.0100162 [664] valid_0's l2: 0.00998765 [665] valid_0's l2: 0.00996005 [666] valid_0's l2: 0.00993276 [667] valid_0's l2: 0.00990016 [668] valid_0's l2: 0.00987478 [669] valid_0's l2: 0.00984551 [670] valid_0's l2: 0.00981317 [671] valid_0's l2: 0.0097865 [672] valid_0's l2: 0.00975501 [673] valid_0's l2: 0.00972338 [674] valid_0's l2: 0.00969267 [675] valid_0's l2: 0.00966437 [676] valid_0's l2: 0.00964019 [677] valid_0's l2: 0.00961377 [678] valid_0's l2: 0.00958592 [679] valid_0's l2: 0.00955535 [680] valid_0's l2: 0.00953371 [681] valid_0's l2: 0.00950365 [682] valid_0's l2: 0.00948142 [683] valid_0's l2: 0.0094571 [684] valid_0's l2: 0.00942921 [685] valid_0's l2: 0.00940303 [686] valid_0's l2: 0.00937365 [687] valid_0's l2: 0.00934648 [688] valid_0's l2: 0.00931874 [689] valid_0's l2: 0.009291 [690] valid_0's l2: 0.00926219 [691] valid_0's l2: 0.00923635 [692] valid_0's l2: 0.00921003 [693] valid_0's l2: 0.00918178 [694] valid_0's l2: 0.00915312 [695] valid_0's l2: 0.00912756 [696] valid_0's l2: 0.00910119 [697] valid_0's l2: 0.00907177 [698] valid_0's l2: 0.00904345 [699] valid_0's l2: 0.00901829 [700] valid_0's l2: 0.00899257 [701] valid_0's l2: 0.0089655 [702] valid_0's l2: 0.0089406 [703] valid_0's l2: 0.00891661 [704] valid_0's l2: 0.00889277 [705] valid_0's l2: 0.00886283 [706] valid_0's l2: 0.00883454 [707] valid_0's l2: 0.0088102 [708] valid_0's l2: 0.00878652 [709] valid_0's l2: 0.00875958 [710] valid_0's l2: 0.00873833 [711] valid_0's l2: 0.00871026 [712] valid_0's l2: 0.00868098 [713] valid_0's l2: 0.00865403 [714] valid_0's l2: 0.00862837 [715] valid_0's l2: 0.00860197 [716] valid_0's l2: 0.00857628 [717] valid_0's l2: 0.0085533 [718] valid_0's l2: 0.00852698 [719] valid_0's l2: 0.00850126 [720] valid_0's l2: 0.00847684 [721] valid_0's l2: 0.00844918 [722] valid_0's l2: 0.00842668 [723] valid_0's l2: 0.00840213 [724] valid_0's l2: 0.00837805 [725] valid_0's l2: 0.00834966 [726] valid_0's l2: 0.00832772 [727] valid_0's l2: 0.0083058 [728] valid_0's l2: 0.00828248 [729] valid_0's l2: 0.00825812 [730] valid_0's l2: 0.00823344 [731] valid_0's l2: 0.00820943 [732] valid_0's l2: 0.0081886 [733] valid_0's l2: 0.00816706 [734] valid_0's l2: 0.00813851 [735] valid_0's l2: 0.00811264 [736] valid_0's l2: 0.00808684 [737] valid_0's l2: 0.00805964 [738] valid_0's l2: 0.00803515 [739] valid_0's l2: 0.0080105 [740] valid_0's l2: 0.00798574 [741] valid_0's l2: 0.00795922 [742] valid_0's l2: 0.00793924 [743] valid_0's l2: 0.00792129 [744] valid_0's l2: 0.00789851 [745] valid_0's l2: 0.00787613 [746] valid_0's l2: 0.00785161 [747] valid_0's l2: 0.00782597 [748] valid_0's l2: 0.00780589 [749] valid_0's l2: 0.00778356 [750] valid_0's l2: 0.00776195 [751] valid_0's l2: 0.0077431 [752] valid_0's l2: 0.00772208 [753] valid_0's l2: 0.00770088 [754] valid_0's l2: 0.00767512 [755] valid_0's l2: 0.00765321 [756] valid_0's l2: 0.00762882 [757] valid_0's l2: 0.00760725 [758] valid_0's l2: 0.00758567 [759] valid_0's l2: 0.00756528 [760] valid_0's l2: 0.00754057 [761] valid_0's l2: 0.00751887 [762] valid_0's l2: 0.00749747 [763] valid_0's l2: 0.00747596 [764] valid_0's l2: 0.00745263 [765] valid_0's l2: 0.0074307 [766] valid_0's l2: 0.00741019 [767] valid_0's l2: 0.00739204 [768] valid_0's l2: 0.00737176 [769] valid_0's l2: 0.00734942 [770] valid_0's l2: 0.00732936 [771] valid_0's l2: 0.00730547 [772] valid_0's l2: 0.00728343 [773] valid_0's l2: 0.00726527 [774] valid_0's l2: 0.00725046 [775] valid_0's l2: 0.007226 [776] valid_0's l2: 0.00720724 [777] valid_0's l2: 0.00719013 [778] valid_0's l2: 0.00716942 [779] valid_0's l2: 0.00714917 [780] valid_0's l2: 0.00712796 [781] valid_0's l2: 0.00710613 [782] valid_0's l2: 0.0070854 [783] valid_0's l2: 0.007067 [784] valid_0's l2: 0.00704738 [785] valid_0's l2: 0.00702729 [786] valid_0's l2: 0.00700954 [787] valid_0's l2: 0.00698751 [788] valid_0's l2: 0.00696706 [789] valid_0's l2: 0.00695013 [790] valid_0's l2: 0.00692799 [791] valid_0's l2: 0.00690834 [792] valid_0's l2: 0.00689022 [793] valid_0's l2: 0.00687461 [794] valid_0's l2: 0.00685537 [795] valid_0's l2: 0.00683864 [796] valid_0's l2: 0.00681821 [797] valid_0's l2: 0.00679957 [798] valid_0's l2: 0.00678304 [799] valid_0's l2: 0.00676526 [800] valid_0's l2: 0.00674829 [801] valid_0's l2: 0.00672748 [802] valid_0's l2: 0.00671314 [803] valid_0's l2: 0.00669539 [804] valid_0's l2: 0.00667696 [805] valid_0's l2: 0.00666189 [806] valid_0's l2: 0.00664278 [807] valid_0's l2: 0.00662476 [808] valid_0's l2: 0.0066045 [809] valid_0's l2: 0.00658688 [810] valid_0's l2: 0.00657008 [811] valid_0's l2: 0.00654931 [812] valid_0's l2: 0.00652892 [813] valid_0's l2: 0.00650945 [814] valid_0's l2: 0.00649235 [815] valid_0's l2: 0.00647223 [816] valid_0's l2: 0.00645115 [817] valid_0's l2: 0.00643335 [818] valid_0's l2: 0.00641364 [819] valid_0's l2: 0.00639329 [820] valid_0's l2: 0.00637625 [821] valid_0's l2: 0.00635915 [822] valid_0's l2: 0.00633663 [823] valid_0's l2: 0.00631993 [824] valid_0's l2: 0.0063028 [825] valid_0's l2: 0.0062848 [826] valid_0's l2: 0.00626578 [827] valid_0's l2: 0.00624708 [828] valid_0's l2: 0.00623038 [829] valid_0's l2: 0.00621295 [830] valid_0's l2: 0.00619585 [831] valid_0's l2: 0.00618205 [832] valid_0's l2: 0.00616672 [833] valid_0's l2: 0.00614851 [834] valid_0's l2: 0.00613162 [835] valid_0's l2: 0.00611457 [836] valid_0's l2: 0.00609737 [837] valid_0's l2: 0.00608204 [838] valid_0's l2: 0.00606595 [839] valid_0's l2: 0.00604497 [840] valid_0's l2: 0.00602921 [841] valid_0's l2: 0.00601185 [842] valid_0's l2: 0.00599524 [843] valid_0's l2: 0.00597993 [844] valid_0's l2: 0.00596425 [845] valid_0's l2: 0.00594689 [846] valid_0's l2: 0.00592871 [847] valid_0's l2: 0.0059126 [848] valid_0's l2: 0.00589392 [849] valid_0's l2: 0.00587897 [850] valid_0's l2: 0.00586262 [851] valid_0's l2: 0.00584732 [852] valid_0's l2: 0.00582891 [853] valid_0's l2: 0.00581132 [854] valid_0's l2: 0.00579666 [855] valid_0's l2: 0.00577848 [856] valid_0's l2: 0.00576402 [857] valid_0's l2: 0.00574758 [858] valid_0's l2: 0.00572844 [859] valid_0's l2: 0.00571458 [860] valid_0's l2: 0.00570056 [861] valid_0's l2: 0.00568792 [862] valid_0's l2: 0.00567322 [863] valid_0's l2: 0.00565784 [864] valid_0's l2: 0.00564145 [865] valid_0's l2: 0.00562681 [866] valid_0's l2: 0.00560813 [867] valid_0's l2: 0.00559159 [868] valid_0's l2: 0.00557886 [869] valid_0's l2: 0.00556378 [870] valid_0's l2: 0.00554823 [871] valid_0's l2: 0.00553179 [872] valid_0's l2: 0.00551684 [873] valid_0's l2: 0.00550021 [874] valid_0's l2: 0.0054866 [875] valid_0's l2: 0.00547274 [876] valid_0's l2: 0.00545589 [877] valid_0's l2: 0.00544012 [878] valid_0's l2: 0.0054281 [879] valid_0's l2: 0.00541436 [880] valid_0's l2: 0.00540007 [881] valid_0's l2: 0.00538562 [882] valid_0's l2: 0.00537077 [883] valid_0's l2: 0.00535535 [884] valid_0's l2: 0.00534103 [885] valid_0's l2: 0.00532573 [886] valid_0's l2: 0.00530942 [887] valid_0's l2: 0.00529119 [888] valid_0's l2: 0.00527625 [889] valid_0's l2: 0.00526415 [890] valid_0's l2: 0.00525031 [891] valid_0's l2: 0.00523463 [892] valid_0's l2: 0.00522234 [893] valid_0's l2: 0.00520553 [894] valid_0's l2: 0.00519216 [895] valid_0's l2: 0.00517861 [896] valid_0's l2: 0.0051687 [897] valid_0's l2: 0.00515267 [898] valid_0's l2: 0.00514124 [899] valid_0's l2: 0.00512636 [900] valid_0's l2: 0.00511042 [901] valid_0's l2: 0.00509234 [902] valid_0's l2: 0.00507939 [903] valid_0's l2: 0.00506686 [904] valid_0's l2: 0.00505396 [905] valid_0's l2: 0.00503911 [906] valid_0's l2: 0.00502585 [907] valid_0's l2: 0.00501396 [908] valid_0's l2: 0.00500107 [909] valid_0's l2: 0.00498863 [910] valid_0's l2: 0.00497211 [911] valid_0's l2: 0.00496041 [912] valid_0's l2: 0.00494742 [913] valid_0's l2: 0.00493091 [914] valid_0's l2: 0.00491638 [915] valid_0's l2: 0.00490328 [916] valid_0's l2: 0.00488862 [917] valid_0's l2: 0.00487562 [918] valid_0's l2: 0.00486164 [919] valid_0's l2: 0.00484643 [920] valid_0's l2: 0.00483327 [921] valid_0's l2: 0.00482031 [922] valid_0's l2: 0.00481015 [923] valid_0's l2: 0.00479466 [924] valid_0's l2: 0.00478117 [925] valid_0's l2: 0.00476855 [926] valid_0's l2: 0.00475397 [927] valid_0's l2: 0.00473896 [928] valid_0's l2: 0.00472724 [929] valid_0's l2: 0.00471297 [930] valid_0's l2: 0.00470006 [931] valid_0's l2: 0.00468702 [932] valid_0's l2: 0.00467521 [933] valid_0's l2: 0.00466514 [934] valid_0's l2: 0.00465004 [935] valid_0's l2: 0.0046374 [936] valid_0's l2: 0.00462535 [937] valid_0's l2: 0.00461603 [938] valid_0's l2: 0.00460596 [939] valid_0's l2: 0.00459329 [940] valid_0's l2: 0.00458267 [941] valid_0's l2: 0.00457171 [942] valid_0's l2: 0.00456195 [943] valid_0's l2: 0.00454889 [944] valid_0's l2: 0.00453498 [945] valid_0's l2: 0.0045241 [946] valid_0's l2: 0.00451257 [947] valid_0's l2: 0.00450106 [948] valid_0's l2: 0.00449129 [949] valid_0's l2: 0.00447776 [950] valid_0's l2: 0.00446848 [951] valid_0's l2: 0.00445618 [952] valid_0's l2: 0.00444714 [953] valid_0's l2: 0.00443571 [954] valid_0's l2: 0.00442496 [955] valid_0's l2: 0.0044127 [956] valid_0's l2: 0.00440143 [957] valid_0's l2: 0.00438998 [958] valid_0's l2: 0.0043749 [959] valid_0's l2: 0.00436525 [960] valid_0's l2: 0.00435274 [961] valid_0's l2: 0.00434034 [962] valid_0's l2: 0.00432844 [963] valid_0's l2: 0.0043179 [964] valid_0's l2: 0.00430632 [965] valid_0's l2: 0.00429557 [966] valid_0's l2: 0.0042838 [967] valid_0's l2: 0.00427301 [968] valid_0's l2: 0.00426204 [969] valid_0's l2: 0.00425168 [970] valid_0's l2: 0.0042391 [971] valid_0's l2: 0.00422889 [972] valid_0's l2: 0.00421565 [973] valid_0's l2: 0.00420352 [974] valid_0's l2: 0.00419274 [975] valid_0's l2: 0.00418182 [976] valid_0's l2: 0.00417131 [977] valid_0's l2: 0.00415949 [978] valid_0's l2: 0.00414624 [979] valid_0's l2: 0.00413553 [980] valid_0's l2: 0.00412225 [981] valid_0's l2: 0.00411082 [982] valid_0's l2: 0.00409779 [983] valid_0's l2: 0.00408897 [984] valid_0's l2: 0.00407828 [985] valid_0's l2: 0.00406799 [986] valid_0's l2: 0.00405855 [987] valid_0's l2: 0.00404701 [988] valid_0's l2: 0.00403567 [989] valid_0's l2: 0.00402557 [990] valid_0's l2: 0.00401755 [991] valid_0's l2: 0.00400607 [992] valid_0's l2: 0.00399713 [993] valid_0's l2: 0.00398729 [994] valid_0's l2: 0.00397694 [995] valid_0's l2: 0.00396689 [996] valid_0's l2: 0.00395627 [997] valid_0's l2: 0.0039451 [998] valid_0's l2: 0.00393505 [999] valid_0's l2: 0.00392469 [1000] valid_0's l2: 0.00391117 Did not meet early stopping. Best iteration is: [1000] valid_0's l2: 0.00391117 pred [[ 0.47436676] [ 0.37895368] [ 0.08911858] ... [-2.55487643] [-2.56092274] [-2.54996901]] [[ 0.47436676] [ 0.37895368] [ 0.08911858] ... [-2.55487643] [-2.56092274] [-2.54996901]]