YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

简介: YOLOv11改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

一、本文介绍

本文记录的是将ConvNeXt V2应用到YOLOv11中的改进方法研究。本文将ConvNeXt V2应用于YOLOv11,一方面利用全卷积掩码自动编码器在训练时优化特征学习,减少模型对大规模标注数据的依赖;另一方面,通过全局响应归一化层增强特征竞争,缓解特征坍塌问题,提高特征多样性。

本文在YOLOv11的基础上配置了原论文中convnextv2_atto', 'convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge八种模型,以满足不同的需求。


专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ConvNeXt V2介绍

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

ConvNeXt V2是一种全新的ConvNet模型家族,旨在提升纯卷积神经网络在各类下游任务中的性能。它在模型结构设计上有独特的出发点,结构原理涉及多个创新组件,并且在性能上展现出显著优势。

2.1 设计出发点

  • 架构与自监督学习结合的挑战:视觉识别领域中,神经网络架构和自监督学习框架对模型性能至关重要。将ConvNeXt与掩码自动编码器(MAE)结合时存在挑战,MAE的编解码器设计针对Transformer的序列处理能力优化,与使用密集滑动窗口的标准ConvNets不兼容。直接将两者结合,未考虑架构与训练目标的关系,难以达到最优性能。先前研究也表明,用基于掩码的自监督学习训练ConvNets存在困难。
  • 特征坍塌问题:对ConvNeXt进行特征空间分析时发现,直接在掩码输入上训练ConvNeXt,MLP层存在特征坍塌现象,即许多特征图处于死亡或饱和状态,通道间激活冗余,这影响了模型的性能。

2.2 结构原理

  • 全卷积掩码自动编码器(FCMAE):采用随机掩码策略,掩码率为0.6,在最后阶段生成掩码并递归上采样到最高分辨率。使用ConvNeXt模型作为编码器,从“稀疏数据视角”出发,将标准卷积层转换为子流形稀疏卷积,使模型仅对可见数据点操作,解决掩码图像建模中信息泄漏问题。解码器采用轻量级的ConvNeXt块,整体形成非对称编解码器架构。计算重建图像与目标图像的均方误差(MSE),仅在掩码区域应用损失。

在这里插入图片描述

  • 全局响应归一化(GRN):为解决特征坍塌问题提出GRN层。该层通过全局特征聚合、特征归一化和特征校准三个步骤,增强通道间的特征竞争。

在这里插入图片描述

具体来说,先使用L2范数进行全局特征聚合,再通过除法归一化计算通道的相对重要性,最后校准原始输入响应。将GRN层融入ConvNeXt块,并去除LayerScale,形成ConvNeXt V2模型家族。

2.3 优势

  • 性能提升显著:在ImageNet分类、COCO检测和ADE20K分割等多种下游任务中,ConvNeXt V2模型性能相比ConvNeXt V1有显著提升。
  • 有效缓解特征坍塌:通过可视化和余弦距离分析可知,ConvNeXt V2有效缓解了特征坍塌问题,各层的余弦距离值较高,表明特征多样性得以保持,学习行为与MAE预训练的ViT模型相似。
  • 模型扩展性强:评估了从低容量的3.7M Atto模型到高容量的650M Huge模型等一系列不同尺寸的模型,结果表明模型具有良好的扩展性,在所有模型尺寸上,微调结果均优于完全监督的对应模型,首次在广泛的模型范围内展示了掩码图像建模的有效性和高效性。

论文:https://arxiv.org/pdf/2301.00808
源码:https://github.com/facebookresearch/ConvNeXt-V2

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142956061

相关文章
|
5月前
|
人工智能 运维 安全
配置驱动的动态 Agent 架构网络:实现高效编排、动态更新与智能治理
本文所阐述的配置驱动智能 Agent 架构,其核心价值在于为 Agent 开发领域提供了一套通用的、可落地的标准化范式。
1399 78
|
6月前
|
机器学习/深度学习 人工智能 算法
AI 基础知识从 0.6 到 0.7—— 彻底拆解深度神经网络训练的五大核心步骤
本文以一个经典的PyTorch手写数字识别代码示例为引子,深入剖析了简洁代码背后隐藏的深度神经网络(DNN)训练全过程。
1079 56
|
5月前
|
人工智能 安全 数据可视化
配置驱动的动态Agent架构网络:实现高效编排、动态更新与智能治理
本文系统性地提出并阐述了一种配置驱动的独立运行时Agent架构,旨在解决当前低代码/平台化Agent方案在企业级落地时面临困难,为Agent开发领域提供了一套通用的、可落地的标准化范式。
470 18
配置驱动的动态Agent架构网络:实现高效编排、动态更新与智能治理
|
4月前
|
网络协议 Linux 虚拟化
配置VM网络:如何设定静态IP以访问主机IP和互联网
以上就是设定虚拟机网络和静态IP地址的基本步骤。需要注意的是,这些步骤可能会因为虚拟机软件、操作系统以及网络环境的不同而有所差异。在进行设定时,应根据具体情况进行调整。
412 10
|
4月前
|
弹性计算 安全 应用服务中间件
阿里云渠道商:怎么配置阿里云网络ACL?
阿里云网络ACL是子网级无状态防火墙,支持精准流量控制、规则热生效且免费使用。本文详解5步配置流程,助您实现Web与数据库层的安全隔离,提升云上网络安全。
|
8月前
|
安全 网络虚拟化 数据安全/隐私保护
配置小型网络WLAN基本业务示例
本文介绍了通过AC与AP直连组网实现企业分支机构移动办公的WLAN基本业务配置方案。需求包括提供名为“WiFi”的无线网络,分配192.168.1.0/24网段IP地址给工作人员,采用直连二层组网方式,AC作为DHCP服务器,并使用隧道转发业务数据。配置步骤涵盖AP与AC间CAPWAP报文传输、DHCP服务设置、AP上线及WLAN业务参数配置等,最终确保STA成功接入无线网络“WiFi”。
配置小型网络WLAN基本业务示例
|
8月前
|
监控 安全 网络安全
网络安全新姿势:多IP配置的五大好处
服务器配置多IP地址,既能提升网络速度与安全性,又能实现多站点托管和故障转移。本文详解多IP的五大妙用、配置方法及进阶技巧。从理论到实践,合理规划IP资源,让服务器性能跃升新高度。
269 2
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
329 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
260 10