python之pyAudioAnalysis:音频特征提取分析文档示例详解

简介: python之pyAudioAnalysis:音频特征提取分析文档示例详解

PyAudioAnalysis是一个开源的Python库,用于从音频文件中提取特征并进行分析。它提供了一系列音频处理函数,可以帮助开发者实现音频分类、情感识别、语音分析等多种任务。在本文中,我们将详细介绍如何使用PyAudioAnalysis进行音频特征提取和分析。

  1. 音频特征提取
    PyAudioAnalysis提供了多种方法用于提取音频的特征。这些特征可以用于描述音频的基本属性和特性,包括时域特征、频域特征和谱图特征等。
    (1) 提取时域特征:
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
 
audio_path = 'audio.wav'
 
# 读取音频文件
[audio_signal, fs] = audioBasicIO.read_audio_file(audio_path)
 
# 提取时域特征
[mt_features, st_features] = audioFeatureExtraction.stFeatureExtraction(audio_signal, fs, 0.050 * fs, 0.025 * fs)
 
在上述代码中,首先使用 `audioBasicIO.read_audio_file` 函数读取音频文件,返回音频信号和采样率。然后,使用 `audioFeatureExtraction.stFeatureExtraction` 函数提取短时特征和中时特征。其中,`0.050 * fs` 表示分析窗口为50毫秒,`0.025 * fs` 表示窗口之间的间隔为25毫秒。
  1. (2) 提取频域特征:
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
 
audio_path = 'audio.wav'
 
# 读取音频文件
[audio_signal, fs] = audioBasicIO.read_audio_file(audio_path)
 
# 提取频域特征
[fbank, freq_bands] = audioFeatureExtraction.stFeatureExtraction(audio_signal, fs, 0.050 * fs, 0.025 * fs)
 
 
上述代码中的 `audioBasicIO.read_audio_file` 和 `audioFeatureExtraction.stFeatureExtraction` 函数用法与前面的相同,只是提取的是频域特征。
  1. (3) 提取谱图特征:
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
 
audio_path = 'audio.wav'
 
# 读取音频文件
[audio_signal, fs] = audioBasicIO.read_audio_file(audio_path)
 
# 提取谱图特征
spec_features = audioFeatureExtraction.stFeatureExtraction(audio_signal, fs, 0.050 * fs, 0.025 * fs)
 
 
在上述代码中,通过 `audioBasicIO.read_audio_file` 函数读取音频文件,然后使用 `audioFeatureExtraction.stFeatureExtraction` 函数提取谱图特征。
  1. 音频特征分析
    提取音频特征后,我们可以使用PyAudioAnalysis进行进一步的分析,比如进行分类或情感识别。
    (1) 音频分类:
from pyAudioAnalysis import audioTrainTest as aT
 
model_path = 'svm_model'
audio_path = 'audio.wav'
 
# 音频分类
result, _ = aT.file_classification(audio_path, model_path, 'svm')
 
 
在上述代码中,`audioTrainTest.file_classification` 函数用于对音频进行分类,需要指定分类模型路径、音频路径和分类器类型(这里选择了支持向量机svm)。
  1. (2) 情感识别:
from pyAudioAnalysis import audioSegmentation as aS
 
audio_path = 'audio.wav'
 
# 情感识别
[emotion, prob] = aS.emotion_extraction(audio_path)
 
 
上述代码中,`audioSegmentation.emotion_extraction` 函数用于从音频中提取情感信息。

以上就是PyAudioAnalysis的音频特征提取和分析的基本使用方法的示例。接下来,我们将继续介绍PyAudioAnalysis的其他功能和使用示例。

  1. 其他功能
    PyAudioAnalysis还提供了许多其他有用的功能,如音频切割、语音识别和基频估计等。
    (1) 音频切割:
from pyAudioAnalysis import audioSegmentation as aS
 
audio_path = 'audio.wav'
 
# 音频切割
segments = aS.silence_removal(audio_path)
 
 
上述代码中,`audioSegmentation.silence_removal` 函数用于从音频中删除静音部分,并返回非静音片段的起始和终止时间。
  1. (2) 语音识别:
```
from pyAudioAnalysis import audioSegmentation as aS
from pyAudioAnalysis import audioTranscription
 
audio_path = 'audio.wav'
 
# 语音识别
transcription = audioTranscription.transcribe_audio(audio_path, 'en')
```
 
在上述代码中,首先使用 `audioSegmentation` 模块的函数剔除音频中的静音部分,然后使用 `audioTranscription.transcribe_audio` 函数对不含静音的音频进行文字转录(这里以英文为例)。
  1. (3) 基频估计:
from pyAudioAnalysis import audioBasicIO
from pyAudioAnalysis import audioFeatureExtraction
 
audio_path = 'audio.wav'
 
# 读取音频文件
[audio_signal, fs] = audioBasicIO.read_audio_file(audio_path)
 
# 基频估计
pitch = audioFeatureExtraction.pitch_contour(audio_signal, fs)
 
 
在上述代码中,通过 `audioBasicIO.read_audio_file` 函数读取音频文件,然后使用 `audioFeatureExtraction.pitch_contour` 函数进行基频估计,返回基频轮廓。
  1. 结论
    在本文中,我们详细介绍了如何使用PyAudioAnalysis进行音频特征提取和分析的示例。通过提取时域特征、频域特征和谱图特征,我们可以获得音频的基本属性和特性。同时,我们还介绍了音频分类、情感识别、音频切割、语音识别和基频估计等功能的示例代码。
    总结而言,PyAudioAnalysis是一个强大且灵活的工具,适用于音频处理和分析的多种任务。开发者可以根据具体需求,灵活运用这些功能,实现各种音频处理和分析的应用。了解和掌握PyAudioAnalysis的使用方法,将会对音频相关的项目开发非常有帮助。


相关实践学习
达摩院智能语音交互 - 声纹识别技术
声纹识别是基于每个发音人的发音器官构造不同,识别当前发音人的身份。按照任务具体分为两种: 声纹辨认:从说话人集合中判别出测试语音所属的说话人,为多选一的问题 声纹确认:判断测试语音是否由目标说话人所说,是二选一的问题(是或者不是) 按照应用具体分为两种: 文本相关:要求使用者重复指定的话语,通常包含与训练信息相同的文本(精度较高,适合当前应用模式) 文本无关:对使用者发音内容和语言没有要求,受信道环境影响比较大,精度不高 本课程主要介绍声纹识别的原型技术、系统架构及应用案例等。 讲师介绍: 郑斯奇,达摩院算法专家,毕业于美国哈佛大学,研究方向包括声纹识别、性别、年龄、语种识别等。致力于推动端侧声纹与个性化技术的研究和大规模应用。
相关文章
|
2月前
|
SQL 数据库 开发者
Python中使用Flask-SQLAlchemy对数据库的增删改查简明示例
这样我们就对Flask-SQLAlchemy进行了一次简明扼要的旅程,阐述了如何定义模型,如何创建表,以及如何进行基本的数据库操作。希望你在阅读后能对Flask-SQLAlchemy有更深入的理解,这将为你在Python世界中从事数据库相关工作提供极大的便利。
236 77
|
4月前
|
XML JSON API
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
|
2月前
|
网络协议 API 开发者
分析http.client与requests在Python中的性能差异并优化。
合理地选择 `http.client`和 `requests`库以及在此基础上优化代码,可以帮助你的Python网络编程更加顺利,无论是在性能还是在易用性上。我们通常推荐使用 `requests`库,因为它的易用性。对于需要大量详细控制的任务,或者对性能有严格要求的情况,可以考虑使用 `http.client`库。同时,不断优化并管理员连接、设定合理超时和重试都是提高网络访问效率和稳定性的好方式。
79 19
|
1月前
|
XML JSON 安全
分析参数顺序对Python requests库进行POST请求的影响。
最后,尽管理论上参数顺序对POST请求没影响,但编写代码时仍然建议遵循一定的顺序和规范,比如URL总是放在第一位,随后是data或json,最后是headers,这样可以提高代码的可读性和维护性。在处理复杂的请求时,一致的参数顺序有助于调试和团队协作。
91 9
|
2月前
|
人工智能 数据库连接 API
掌握Python的高级用法:技巧、技术和实用性示例
本文分享了Python的高级用法,包括生成器、装饰器、上下文管理器、元类和并发编程等。生成器通过`yield`实现懒加载序列;装饰器用于增强函数功能,如添加日志或性能分析;上下文管理器借助`with`语句管理资源;元类动态定制类行为;并发编程利用`threading`和`asyncio`库提升任务执行效率。掌握这些高级概念可优化代码质量,解决复杂问题,提高程序性能与可维护性。
|
3月前
|
数据采集 数据可视化 数据挖掘
基于Python的App流量大数据分析与可视化方案
基于Python的App流量大数据分析与可视化方案
|
4月前
|
Python
Python如何给视频添加音频和字幕
通过以上方法和代码示例,你可以在Python中成功实现视频的音频和字幕添加。确保理解每一步的实现细节,应用到实际项目中时能有效地处理各种视频编辑需求。
159 20
|
4月前
|
JSON 监控 API
python语言采集淘宝商品详情数据,json数据示例返回
通过淘宝开放平台的API接口,开发者可以轻松获取商品详情数据,并利用这些数据进行商品分析、价格监控、库存管理等操作。本文提供的示例代码和JSON数据解析方法,可以帮助您快速上手淘宝商品数据的采集与处理。
|
5月前
|
Go Python
Python中的round函数详解及使用示例
`round()`函数是Python内置的用于四舍五入数字的工具。它接受一个数字(必需)和可选的小数位数参数,返回最接近的整数或指定精度的浮点数。本文详细介绍其用法、参数及示例,涵盖基本操作、负数处理、特殊情况及应用建议,帮助你更好地理解和运用该函数。
487 2
|
测试技术 Linux API
mutagen-处理音频元数据的Python模块
Mutagen是处理音频元数据的Python模块。它支持ASF,FLAC,MP4,Monkey's Audio,MP3,Musepack,Ogg Opus,Ogg FLAC,Ogg Speex,Ogg Theora,Ogg Vorbis,True Audio,WavPack,OptimFROG和AIFF音频文件。支持所有版本的ID3v2,并解析所有标准的ID3v2.4帧。它可以读取Xing标头,以准确计算MP3的比特率和长度。无论音频格式如何,都可以编辑ID3和APEv2标签。它还可以在单个数据包/页面级别上处理Ogg流。
2668 0
mutagen-处理音频元数据的Python模块

推荐镜像

更多