房地产大数据催生新商业蓝海 提供决策支持是核心

简介:

正被大数据改变的房地产行业,也会面临瓶颈,日前多家房地产相关企业发布大数据职能产品,宣称挑战房地产信息不对称。

国内首款房地产大数据人工智能产品“MASA-慧赢销”(简称MASA) 团队负责人陈焱指出,大数据、人工智能等技术引入房地产行业,形成“互联网+房地产”大循环,将最终解决房地产交易信息不对称瓶颈。

同策咨询研究总监张宏伟指出,打通、连接、提升商业台前台后所有场景,以资产数据化为目标,为客户规划技术路径,以“技术+服务”为基础,从互联网建设开始,一步步实现管控,一方面解决了房地产信息不对称的瓶颈,另一方面也为房地产资产证券化积累基础数据,将对全行业转型产生影响。

知名科技作家陈根则指出,“互联网+”浪潮对房地产业带来的影响,一方面是在硬件设施方面,借助互联网技术将物业、住宅内外的控制设施与手机之间建立连接;另外是软件方面,借助手机APP实现物业服务无人化管理。

陈根认为,随着“互联网+房地产”的不断深入,房地产领域的大数据价值将会成为新的商业蓝海。

信息不对称难题

房地产产业链对于信息透明的需求已经很迫切,平台服务商应运而生。

比如房企拿地前需要大量市场调研,但缺乏有效的调研工具和依据;房产中介经纪人在服务时,只能根据与客户见面时获得的信息,猜测客户对房源地段的偏好。可很多经纪人只能用一通又一通的电话获取信息。

对房屋买卖双方而言,他们需要的则是更加明确的信息,希望压缩看房与谈判时间,尽快解决问题。

陈焱将这些问题归结于房产交易的三大瓶颈:“沉默数据+经验判断”;缺乏对客户的把握性;缺乏有效工具来评价营销效果。

目前的“互联网+房地产”大多局限于服务模式的改变,包括从原先的线下交易向O2O转变、利用共享经济提倡互助交易等;但缺乏从技术上解决信息不对称的根本问题。

“MASA-慧赢销希望在这些问题上有所突破”。陈焱说,由同策咨询、TalkingData和脉策数据联合研发的MASA,提出了对全面解决房地产交易各个环节和环节中各方对信息的需求满足。

要把大数据、人工智能等技术引入“互联网+房地产”,以解决房地产交易在信息不对称上的瓶颈,关键是线下楼盘数据的铺点和采集。这也催生了各种大数据公司。比如容易网专为零售业提供全渠道整合营销方案及配套设备及商业圈媒体运营,从2012年成立至今,已超过300家商场结盟。

核心在对决策的支持

在日前举行的一个大数据论坛上,香港科大计算机系主任杨强教授在演讲中指出,少量公开数据的获取难度不大,但是真正对于商业决策有帮助的大量公开数据的收集难度是很大的,搜索、整理、挖掘、呈现出其中的关联关系,并呈现出一个具象化的结果,难度就更大,所以各个行业均需要一个更加高效、直接的方法帮助企业与个人把杂乱信息转换为决策支持。

悦商科技总经理吴弼川认为,商业+互联网的核心,关键在全面行为数据化和经营空间扩展,实现每一个场景和消费者都与前后台数据库无缝对接。

据陈焱介绍,MASA团队构建了房地产行业、客户、城市三个方面的底层数据库,整合了TalkingData和银联智惠两大数据运营商,为产品核心算法提供数据源。据悉,MASA团队用了近一年的时间进行线下楼盘数据的铺点和采集,建立了首个可用于分析算法建模的楼盘字典信息库。

他举例说:“MASA根据人们对房源的了解需求,建立了丰富的楼盘字典,在定义一套房源的属性时,需要收集60个大项、300多个小项的数据。”

这只是MASA对房源数据的收集和整理,同时还有针对客户数据的整理和分析。最终目标是实现对房产交易的精准洞察,从而能同时帮助买卖双方。

在同策咨询董事长孙益功看来,随着大数据的应用,未来有三类公司可以从中受益:产生数据的公司,比如谷歌等制造数据的企业,通过整理、分析,可以创造价值;具备数据能力的公司,比如那些利用数据能对人的决策、对商业流程以及商业判断产生本质影响的企业;具有数据思维的公司,即将大数据思维应用到公司决策、生产和服务中。

显然,上述多个大数据产品只是一种工具和探索,希望让更多处在房地产产业链上的企业和个人从中受益。

陈根指出,可以预见不久的将来房地产销售领域将被人工智能所取代,也即具有人工智能技术的机器人,不过这一切实现的基础是基于大数据。而机器人销售成交率的高低,一方面除了人工智能技术本身的“智能”程度以外;另外一个关键因素就是大数据的质量。

综合业内人士评价指出,值得关注的是在大数据时代如何保护用户隐私,或者可以理解为用户数据在商业挖掘过程中的商业边界问题。当然,对于房地产企业而言,除了互联网+房地产之外,大数据+房地产或许是个更具有潜力的价值点。不论是互联网+房地产,或是房地产大数据营销,除了看到数据的商业价值之外,或许我们需要更多的思考大数据时代用户的隐私权。

本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
9月前
|
监控 数据可视化 大数据
让大数据成为你的决策外挂:一窥业务决策的“聪明”秘诀
让大数据成为你的决策外挂:一窥业务决策的“聪明”秘诀
223 2
让大数据成为你的决策外挂:一窥业务决策的“聪明”秘诀
|
6月前
|
机器学习/深度学习 供应链 大数据
用数据说话,决策才不盲:大数据到底怎么帮你做业务判断?
用数据说话,决策才不盲:大数据到底怎么帮你做业务判断?
147 3
|
5月前
|
存储 供应链 数据可视化
Java 大视界 -- 基于 Java 的大数据可视化在企业供应链风险预警与决策支持中的应用(204)
本篇文章探讨了基于 Java 的大数据可视化技术在企业供应链风险预警与决策支持中的深度应用。文章系统介绍了从数据采集、存储、处理到可视化呈现的完整技术方案,结合供应链风险预警与决策支持的实际案例,展示了 Java 大数据技术如何助力企业实现高效、智能的供应链管理。
|
8月前
|
数据采集 人工智能 大数据
大数据+商业智能=精准决策,企业的秘密武器
大数据+商业智能=精准决策,企业的秘密武器
260 28
|
数据可视化 Java 大数据
Java 大视界 -- 基于 Java 的大数据可视化在城市规划决策支持中的交互设计与应用案例(164)
本文围绕基于 Java 的大数据可视化在城市规划决策支持中的应用展开,分析决策支持现状与挑战,阐述技术应用方法,结合实际案例和代码,提供实操性强的技术方案。
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
658 15
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
660 2
|
数据采集 分布式计算 MaxCompute
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
304 3
|
Java Spring 开发者
解锁 Spring Boot 自动化配置的黑科技:带你走进一键配置的高效开发新时代,再也不怕繁琐设置!
【8月更文挑战第31天】Spring Boot 的自动化配置机制极大简化了开发流程,使开发者能专注业务逻辑。通过 `@SpringBootApplication` 注解组合,特别是 `@EnableAutoConfiguration`,Spring Boot 可自动激活所需配置。例如,添加 JPA 依赖后,只需在 `application.properties` 配置数据库信息,即可自动完成 JPA 和数据源设置。这一机制基于多种条件注解(如 `@ConditionalOnClass`)实现智能配置。深入理解该机制有助于提升开发效率并更好地解决问题。
296 0

热门文章

最新文章