R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: R语言决策树、随机森林、逻辑回归临床决策分析NIPPV疗效和交叉验证

全文链接:http://tecdat.cn/?p=32295


临床决策(clinical decision making)是医务人员在临床实践过程中,根据国内外医学科研的最新进展,不断提出新方案,与传统方案进行比较后,取其最优者付诸实施,从而提高疾病诊治水平的过程点击文末“阅读原文”获取完整代码数据


在临床医疗实践中,许多事件的发生是随机的,对个体患者来说治疗措施的疗效、远期预后常常是不确定的和不可准确预测的,究竟何种选择最好很难简单做出决定。

本文帮助客户进行决策分析NIPPV疗效数据,在充分评价不同方案的风险及利益之后推荐一个最佳的方案,最大限度地保障患者权益,减少临床实践及卫生决策失误。

决策树分析步骤

决策树分析法是通过决策树图形展示临床重要事件的可能发展过程及结局,比较各种备选方案的预期结果从而进行择优决策的方法。决策树分析法通常有6个步骤。

明确决策问题,确定备选方案

对欲解决的问题有清楚的界定,应列出所有可能的备选方案。在决策树上决策的选择应用决策结来代表,通常用方框表示,每个备选方案用从方框引出的臂表示,表示最终决策结果的决策结总是放在决策树的最左端。

用树形图展示决策事件决策

树的画法是从左至右,可能发生的最终结局总是放在决策树最右端,用小三角形表示,称为结局结。每一种结局都是一系列机会事件按时间顺序自然发展的结果,在决策树上这种事件,用圆圈符号表示,称为机会结。每一个机会事件的直接结局用与圆圈联结的臂表示,不同机会结从左至右的顺序是事件发生的时相关系的反映。一个机会结可以有多个直接结局,从每个机会结引出的结局必须是独立、互不包容的状态。

标明各种事件可能出现的概率

每一种事件出现的可能性用概率表示,一般应从质量可靠的文献中查找并结合专家的临床经验及本单位情况进行推测。从每一个事件发生的各种后续事件的可能性服从概率论的加法定律,即每一个机会结发出的直接结局的各臂概率之和必须为1.0。

对最终结局赋值

可用效用值为最终结局赋值,效用值是对患者健康状态偏好程度的测量,通常应用0~1的数字表示,最好的健康状态为1,死亡为0。有时可以用寿命年、质量调整寿命年表示。

计算每一种备选方案的期望值

计算备选方案期望值的方法是从“树尖”开始向“树根”的方向(从右向左)进行计算,效用值与其发生概率的乘积即是期望效用值,每个机会结的期望效用值为该机会结所有可能事件的期望效用值之总和。在决策树中如果有次级决策结时,与机会结期望效用值的计算方法不同,只能选择可提供最大期望效用值的决策臂,而忽略其他臂。最后,选择期望值最高的备选方案为决策方案。

对结论进行敏感性分析

由于临床实践中的事件发生概率值及健康状态的效用值等都可能在一定范围内变动,需要进行敏感性分析。敏感性分析要回答的问题是:当概率及结局效用值等在一个合理的范围内变动时,决策分析的结论方向会改变吗?敏感性分析的目的是测试决策分析结论的稳定性。


NIPPV疗效数据


剔除缺失数据

datanew=**na.omit**(datanew)


建立决策树:疗效


datanew.train1=datanew.train[train2,]  
datanew.train2=datanew.train[-train2,]


剪枝


CARTmodel1 = **rpart**( (疗效) ~.

**printcp**(CARTmodel1)

不剪枝


输出决策树cp值

根据cp值对决策树进行剪枝

able[**which.min**(CARTmodel$c
**prune**(CARTmodel, cp= C

对数据进行预测

得到训练集混淆矩阵准确度和MSE

#########################################准确度  
**sum**(**diag**(tab))/**sum**(tab)
## [1] 0.7755102
###############################################MSE##############  
  
MSE=function(y,pred)**sqrt**(**mean**(**as.numeric**(y)-**as.numeric**(pred))^2)  
  
**MSE**(tree.pred,datanew.test$疗效)
## [1] 0.06122449

用predict算下错率

预测分类号


输出结果到excel


**brules.table**(CARTmodel2)[,**c**("Subrule","Variable","Value")]

变量重要程度



点击标题查阅往期内容


数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化


01

02

03

04


随机森林


变量重要程度


**importance**(rf)

**plot**(d,center=TRUE,leaflab=

混淆矩阵


###########################################准确率  
**sum**(**diag**(tab))/**sum**(tab)
## [1] 0.8163265
*# [1] 0.7755102*  
  
###############################################MSE##############  
**MSE**(**predict**(rf,datanew.test),datanew.test$疗效)
## [1] 0.02040816


预测分类号



逻辑回归模型


M2 <- **glm**(formula = 疗效 ~ .,fami


迭代回归之前的回归模型参数


迭代回归后的模型参数


逻辑回归预测


#########################################准确度  
**sum**(**diag**(tab))/**sum**(tab)
## [1] 0.7755102
##############################################预测分类号  
pred
##   2   3   9  13  14  15  17  22  23  26  29  30  32  35  38  39  42  44  
##   1   1   1   1   1   1   1   1   1   2   1   1   2   2   1   1   1   2  
##  52  53  56  57  60  61  63  64  66  68  69  79  83  87  88  92  94  99  
##   1   2   1   1   1   2   1   1   2   1   1   2   1   2   2   1   2   1  
## 102 105 106 108 109 112 113 118 123 134 139 140 143  
##   2   2   2   2   2   2   1   1   1   2   2   2   1


交叉验证


决策树交叉验证

cv.model=**cv.tree**(cpus.ltr, , prune.tree,K =10)  
best.size <- cv.model$size[**which**(cv.model$dev==**min**(cv.model$dev))] *# wh*

十折交叉验证

k=10  
for(kk in 1:k){  
  index=**sample**(1:**dim**(data)[1],**floor**(**dim**(data)[1]*(1/k)),replace=F) *#筛选样本*  
  test=**as.data.frame**(data[index,]) *#训练集*
  
  
  *#正确率*  
precisek/k
## [1] 0.7285714

随机森林交叉验证

**rfcv**(**na.omit**(datanew.train), **na.omit**(datanew.train)$疗效, cv.fold=10)

十折交叉验证

*#正确率*  
precisek/k
## [1] 0.8424495

逻辑回归交叉验证

(cv.err <- **cv**

summary(cv.err)

十折交叉验证

*#正确率*  
precisek/k
## [1] 0.6416667
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
67 3
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
5月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
98 3
|
8月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)