SPSS时间序列ARIMA、指数平滑法数据分析汽车销量数据

简介: SPSS时间序列ARIMA、指数平滑法数据分析汽车销量数据

全文链接:http://tecdat.cn/?p=30861



本文对汽车销量数据进行时间序列数据分析,我们向客户演示了用SPSS的ARIMA、指数平滑法可以提供的内容点击文末“阅读原文”获取完整代码数据


操作步骤:

  • 先加日期
  • 散点图
  • 再去趋势化
  • 再去季节性
  • 再模拟模型ARIMA分析
  • 得出结论

查看数据

X9CW})(]JE5WHR2A1C3W1XV.png

时间序列散点图

CI]TD`$BLAWFZ9W$JH](4L1.png

图:sales 序列

从趋势图可以明显看出,时间序列的特点为:呈线性趋势、有季节性变动,但季节波动随着趋势增加而加大。

 

相关视频

~A@_50W4LM(EB$1YNL9808M.png

KI948VBI[MT{(U~Q)D`O(QC.png


`FZ}%_B[{W2FI$2}6OFMFOD.png

ENJD)ID@3(QQLIC98G[_EYQ.png

](1(I5BMPQ4`FNV}~RCHRD9.png

PMJ8U23OCKP%Y71Q@S}8GZJ.png

PHDJ`0Z7E5XT%$SPKH{(W%O.png

ANJKIHI2S2PXW6HTF46I7]4.png

}}~$21AER$1PUE31I3R@OO7.png

VD5GR8KQQJ@OL~DBM4662)A.png


指数平滑法剔除趋势项

_GP~X6T9X`%L165%7~603]3.png

季节性分解

VBTT7$2_9V1BM)}D@]YGH@T.png


点击标题查阅往期内容


R]I7@D5_BEC{WHEL9S%UC}O.png

python用ARIMA模型预测CO2浓度时间序列实现

左右滑动查看更多

01

RH02QNF1DGNAEXQUK@O]35M.png

02

$NM[RXSTL3SAIHM_ESAUCP4.png

03

BMZ2D@~X21ZIU(2G498H3A5.png

04

VA]KG7XAUZ942K2C@U6ANF8.png



ARIMA模型拟合

模型描述



模型类型

模型 ID 销量 模型_1 ARIMA(1,0,0)(1,0,0)




模型摘要

模型拟合










拟合统计量 均值 SE 最小值 最大值 百分位





5 10 25 50 75 90 95




平稳的 R 方 .440 . .440 .440 .440 .440 .440 .440 .440 .440 .440
R 方 .496 . .496 .496 .496 .496 .496 .496 .496 .496 .496
RMSE 20.957 . 20.957 20.957 20.957 20.957 20.957 20.957 20.957 20.957 20.957
MAPE 8.783 . 8.783 8.783 8.783 8.783 8.783 8.783 8.783 8.783 8.783
MaxAPE 45.945 . 45.945 45.945 45.945 45.945 45.945 45.945 45.945 45.945 45.945
MAE 14.824 . 14.824 14.824 14.824 14.824 14.824 14.824 14.824 14.824 14.824
MaxAE 57.941 . 57.941 57.941 57.941 57.941 57.941 57.941 57.941 57.941 57.941
正态化的 BIC 6.292 . 6.292 6.292 6.292 6.292 6.292 6.292 6.292 6.292 6.292

 

模型统计量





模型 预测变量数 模型拟合统计量 Ljung-Box Q(18) 离群值数

平稳的 R 方 统计量 DF Sig.


销量-模型_1 0 .440 35.895 16 .003 0

Z_)13PM(4]D%P]25CU(N21F.png

D(A8)V@_NX98`BJ7LVH4NHY.png

HJEZV9G65%PTGU5HG$~5@4P.png

误差白噪声检验

J}MCCYZ]I87WX[WPZ8RFMYH.png


·      模型拟合并相比较简单季节性和Winters模型没有太大的优势,结果可接受。Sig.列给出了 Ljung-Box 统计量的显著性值,该检验是对模型中残差错误的随机检验;表示指定的模型是否正确。显著性值大于0.05 表示残差误差是随机的,则意味着所观测的序列中使用该模型拟合较好。

·      平稳的R方:显示固定的R平方值。此统计量是序列中由模型解释的总变异所占比例的估计值。该值越高(最大值为 1.0),则模型拟合会越好。

·      检查模型残差的自相关函数 (ACF) 和偏自相关函数 (PACF) 的值比只查看拟合优度统计量能更多地从量化角度来了解模型。


相关文章
|
2月前
|
数据挖掘 PyTorch TensorFlow
|
22天前
|
机器学习/深度学习 人工智能 搜索推荐
某A保险公司的 数据图表和数据分析
某A保险公司的 数据图表和数据分析
48 0
某A保险公司的 数据图表和数据分析
|
3月前
|
数据采集 DataWorks 数据挖掘
提升数据分析效率:DataWorks在企业级数据治理中的应用
【8月更文第25天】本文将探讨阿里巴巴云的DataWorks平台如何通过建立统一的数据标准、规范以及实现数据质量监控和元数据管理来提高企业的数据分析效率。我们将通过具体的案例研究和技术实践来展示DataWorks如何简化数据处理流程,减少成本,并加速业务决策。
405 54
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
如何理解数据分析及数据的预处理,分析建模,可视化
如何理解数据分析及数据的预处理,分析建模,可视化
46 0
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
40 5
|
3月前
|
存储 数据挖掘 数据处理
DataFrame探索之旅:如何一眼洞察数据本质,提升你的数据分析能力?
【8月更文挑战第22天】本文通过电商用户订单数据的案例,展示了如何使用Python的pandas库查看DataFrame信息。首先导入数据并使用`head()`, `columns`, `shape`, `describe()`, 和 `dtypes` 方法来快速概览数据的基本特征。接着,通过对数据进行分组操作计算每位顾客的平均订单金额,以此展示初步数据分析的过程。掌握这些技能对于高效的数据分析至关重要。
39 2
|
3月前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
88 2
|
2月前
|
机器学习/深度学习 数据挖掘 TensorFlow
从数据小白到AI专家:Python数据分析与TensorFlow/PyTorch深度学习的蜕变之路
【9月更文挑战第10天】从数据新手成长为AI专家,需先掌握Python基础语法,并学会使用NumPy和Pandas进行数据分析。接着,通过Matplotlib和Seaborn实现数据可视化,最后利用TensorFlow或PyTorch探索深度学习。这一过程涉及从数据清洗、可视化到构建神经网络的多个步骤,每一步都需不断实践与学习。借助Python的强大功能及各类库的支持,你能逐步解锁数据的深层价值。
59 0
|
3月前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
3月前
|
供应链 数据可视化 数据挖掘
【python】python省市水资源数据分析可视化(源码+数据)【独一无二】
【python】python省市水资源数据分析可视化(源码+数据)【独一无二】