全文链接:http://tecdat.cn/?p=30330
团队需要分析一个来自在线零售商的数据(点击文末“阅读原文”获取完整代码数据)。
该数据包含了78周的购买历史。该数据文件中的每条记录包括四个字段。客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及价值(查看文末了解数据免费获取方式)。我们被要求建立一个模型来预测消费者每周的购买频率、书籍的购买单位和购买价值。
RFM模型
RFM是一个用于营销分析的模型,它通过购买模式或习惯来细分公司的消费者群体。特别是,它评估了客户的回顾性(他们多久前进行过一次购买)、频率(他们购买的频率)和价值(他们花多少钱)。
然后,通过测量和分析消费习惯,RFM被用来识别一个公司或组织的最佳客户,以改善低分客户并保持高分客户。
关键要点
经常性、频率、价值(RFM)是一种营销分析工具,用于根据客户消费习惯的性质来确定公司的最佳客户。一个RFM分析通过对客户和顾客的三个类别进行打分来评估他们:他们最近有多大的购买行为,他们购买的频率,以及他们购买的规模。RFM模型为这三个类别中的每一个客户打出1-5分(从最差到最好)的分数。RFM分析帮助企业合理地预测哪些客户有可能再次购买他们的产品,有多少收入来自于新客户(相对于老客户),以及如何将偶尔购买的买家变成习惯购买的买家。
####计算用户最近一次的购买 R_table$R <- as.numeric(NOW - ParsedDate) ###计算用户的购买频率 aggregate(FUN=length) # Calculate F ###计算用户的购买金额 aggregate(FUN=sum) # Calculate M
得到每个用户的RFM值,利用RFM三个值的四分位数来对用户进行分类
多元线性回归模型
查看回归模型结果
得到对r值的线性拟合模型的结果,可以看到RFM三个分类值都与r值有显著的关系,Rsquare值达到了0.8以上,说明拟合效果较好。
得到对r值的线性拟合模型的结果,可以看到RFM三个分类值都与f值有显著的关系,Rsquare值达到早0.4左右,说明拟合效果一般。
得到对r值的线性拟合模型的结果,可以看到出了M分类值以外,FM的分类值都与f值有显著的关系,Rsquare值达到了0.4左右,说明拟合效果一般。
点击标题查阅往期内容
数据分享|R语言用主成分PCA、 逻辑回归、决策树、随机森林分析心脏病数据并高维可视化
01
02
03
04
对测试集做预测
线性回归模型预测值和拟合值比较
预测拟合值的图中,红点表示实际样本点,可以看到F和M值的预测相对接近实际样本点,预测效果较好。然而,误差仍然比较大,因此尝试采用决策树模型进行预测。
决策树模型预测
ct <- rpart.control(xval=10, minsplit=20, cp=0.1)
绘制决策树
rpart.plot(fitR, branch=1, branch.type=2, type=1, border.col="blue", split.col="red",
从结果图来看,决策树对f值和m值的拟合程度更好。
从三个模型的结果里来看,rel error和xerror都较小,因此模型预测拟合效果较好。
因此,模型的整体效果相对线性模型得到了提升。