【视频】复杂网络分析CNA简介与R语言对婚礼数据聚类社区检测和可视化|数据分享

简介: 【视频】复杂网络分析CNA简介与R语言对婚礼数据聚类社区检测和可视化|数据分享

全文链接:http://tecdat.cn/?p=18770 


复杂网络分析研究如何识别、描述、可视化和分析复杂网络。

为了用R来处理网络数据,我们使用婚礼数据集查看文末了解数据获取方式

CNA 研究和应用爆炸式增长的突出原因是两个因素 - 一个是廉价而强大的计算机的可用性,使在数学、物理和社会科学方面接受过高级培训的研究人员和科学家能够进行一流的研究;另一个因素是是人类社会、行为、生物、金融和技术方面不断增加的复杂性。


网络是离散数据的组织和表示的关系形式。关于网络的两个最重要的概念是实体和它们之间的关系。实体称为节点,关系称为边。网络节点和边是高级抽象,对于大多数网络来说,它们的真实性质并不重要。当必要时,我们通过添加属性来表示节点和边。关系或边通常涉及两个离散的实体或节点,尽管实体可以与自身存在关系,这种关系称为自反关系。


在讨论复杂网络的真正样子之前,让我们先谈谈有时称为经典网络的基本简单网络。经典网络的一个例子是线性网络——我们生命的时间线,每个生命事件(例如“出生”、“第一次走路”、“学校毕业”、“婚姻”和最终的“死亡”)都是一个实体至少一个属性是时间。“发生在之后”是这种情况下的关系,因为一条边将两个事件连接在一起,一个事件紧接着另一个事件发生。这个网络之所以被认为是简单的,是因为它具有规则的结构,而不是因为它很小。

线性时间线


点击标题查阅往期内容


航空公司复杂网络对疫情进行建模


01

02

03

04


复杂的网络具有非平凡的结构,它既不是网格也不是树。

由于没有全局控制的分散过程,这些复杂的网络发生在自然界和人造世界中。此类网络的一些代表包括:

  1. 社交网络:家人和朋友、Twitter 和 instagram 追随者等。
  2. 文化网络:宗教网络、语言家族等。
  3. 技术网络:交通和通讯系统等……
  4. 金融网络:华尔街市场、国际贸易等。
  5. 生物网络:基因/蛋白质相互作用、疾病流行等。


R语言复杂网络分析:聚类(社区检测)和可视化


为了用R来处理网络数据,我们使用婚礼数据集查看文末了解数据获取方式

> nflo=network(flo,directed=FALSE)

> plot(nflo, displaylabels = TRUE,+ boxed.labels =+ FALSE)

下一步是igraph。由于我们有邻接矩阵,因此可以使用它

graph\_from\_adjacency_matrix(flo,


+ mode = "undirected")

我们可以在两个特定节点之间获得最短路径。我们给节点赋予适当的颜色

all\_shortest\_paths(iflo,
 )
 
 
> plot(iflo)

我们还可以可视化边,需要从输出中提取边缘

> lins=c(paste(as.character(L)\[1:4\],
+ "--"
+ as.character(L)\[2:5\]  sep="" ,
+ paste(as.character(L) 2:5\],
+ "--",
 
> E(ifl )$color=c("grey","black")\[1+EU\]> plot(iflo)

也可以使用D3js可视化

> library( networkD3 )
> simpleNetwork (df)

下一个问题是向网络添加一个顶点。最简单的方法是通过邻接矩阵实现概率

> flo2\["f","v"\]=1> flo2\["v","f"\]=1

然后,我们进行集中度测量。

目的是了解它们之间的关系。

 

betweenness(ilo)
 
> cor(base)
betw close deg eig
betw 1.0000000 0.5763487 0.8333763 0.6737162close 0.5763487 1.0000000 0.7572778 0.7989789deg 0.8333763 0.7572778 1.0000000 0.9404647eig 0.6737162 0.7989789 0.9404647 1.0000000

可以使用层次聚类图来可视化集中度度量

hclust(dist( ase  ,


+ method="ward")



> for(i in 1:4) rbase\[,i\]=rank(base\[,i\])

在此,特征向量测度非常接近顶点的度数。

最后,寻找聚类(以防这些家庭之间爆发战争)

> kc <- fastgreedy.community ( iflo )

在这里,我们有3类

相关文章
|
1月前
|
运维 监控 安全
公司监控软件:SAS 数据分析引擎驱动网络异常精准检测
在数字化商业环境中,企业网络系统面临复杂威胁。SAS 数据分析引擎凭借高效处理能力,成为网络异常检测的关键技术。通过统计分析、时间序列分析等方法,SAS 帮助企业及时发现并处理异常流量,确保网络安全和业务连续性。
60 11
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
2月前
|
安全 Linux 网络安全
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息
nmap 是一款强大的开源网络扫描工具,能检测目标的开放端口、服务类型和操作系统等信息。本文分三部分介绍 nmap:基本原理、使用方法及技巧、实际应用及案例分析。通过学习 nmap,您可以更好地了解网络拓扑和安全状况,提升网络安全管理和渗透测试能力。
243 5
|
2月前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
109 7
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合DWRSeg二次创新C3k2_DWRSeg:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2融合DWRSDWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取方法分解为区域残差化和语义残差化两步,提高了多尺度信息获取的效率。网络设计了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,分别用于高阶段和低阶段,以充分利用不同感受野的特征图。实验结果表明,DWRSeg在Cityscapes和CamVid数据集上表现出色,以每秒319.5帧的速度在NVIDIA GeForce GTX 1080 Ti上达到72.7%的mIoU,超越了现有方法。代码和模型已公开。
|
4月前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
385 5
|
3月前
|
运维 安全 网络协议
Python 网络编程:端口检测与IP解析
本文介绍了使用Python进行网络编程的两个重要技能:检查端口状态和根据IP地址解析主机名。通过`socket`库实现端口扫描和主机名解析的功能,并提供了详细的示例代码。文章最后还展示了如何整合这两部分代码,实现一个简单的命令行端口扫描器,适用于网络故障排查和安全审计。
70 0
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
77 17
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
60 10