【视频】复杂网络分析CNA简介与R语言对婚礼数据聚类社区检测和可视化|数据分享

简介: 【视频】复杂网络分析CNA简介与R语言对婚礼数据聚类社区检测和可视化|数据分享

全文链接:http://tecdat.cn/?p=18770 


复杂网络分析研究如何识别、描述、可视化和分析复杂网络。

为了用R来处理网络数据,我们使用婚礼数据集查看文末了解数据获取方式

CNA 研究和应用爆炸式增长的突出原因是两个因素 - 一个是廉价而强大的计算机的可用性,使在数学、物理和社会科学方面接受过高级培训的研究人员和科学家能够进行一流的研究;另一个因素是是人类社会、行为、生物、金融和技术方面不断增加的复杂性。


网络是离散数据的组织和表示的关系形式。关于网络的两个最重要的概念是实体和它们之间的关系。实体称为节点,关系称为边。网络节点和边是高级抽象,对于大多数网络来说,它们的真实性质并不重要。当必要时,我们通过添加属性来表示节点和边。关系或边通常涉及两个离散的实体或节点,尽管实体可以与自身存在关系,这种关系称为自反关系。


在讨论复杂网络的真正样子之前,让我们先谈谈有时称为经典网络的基本简单网络。经典网络的一个例子是线性网络——我们生命的时间线,每个生命事件(例如“出生”、“第一次走路”、“学校毕业”、“婚姻”和最终的“死亡”)都是一个实体至少一个属性是时间。“发生在之后”是这种情况下的关系,因为一条边将两个事件连接在一起,一个事件紧接着另一个事件发生。这个网络之所以被认为是简单的,是因为它具有规则的结构,而不是因为它很小。

线性时间线


点击标题查阅往期内容


航空公司复杂网络对疫情进行建模


01

02

03

04


复杂的网络具有非平凡的结构,它既不是网格也不是树。

由于没有全局控制的分散过程,这些复杂的网络发生在自然界和人造世界中。此类网络的一些代表包括:

  1. 社交网络:家人和朋友、Twitter 和 instagram 追随者等。
  2. 文化网络:宗教网络、语言家族等。
  3. 技术网络:交通和通讯系统等……
  4. 金融网络:华尔街市场、国际贸易等。
  5. 生物网络:基因/蛋白质相互作用、疾病流行等。


R语言复杂网络分析:聚类(社区检测)和可视化


为了用R来处理网络数据,我们使用婚礼数据集查看文末了解数据获取方式

> nflo=network(flo,directed=FALSE)

> plot(nflo, displaylabels = TRUE,+ boxed.labels =+ FALSE)

下一步是igraph。由于我们有邻接矩阵,因此可以使用它

graph\_from\_adjacency_matrix(flo,


+ mode = "undirected")

我们可以在两个特定节点之间获得最短路径。我们给节点赋予适当的颜色

all\_shortest\_paths(iflo,
 )
 
 
> plot(iflo)

我们还可以可视化边,需要从输出中提取边缘

> lins=c(paste(as.character(L)\[1:4\],
+ "--"
+ as.character(L)\[2:5\]  sep="" ,
+ paste(as.character(L) 2:5\],
+ "--",
 
> E(ifl )$color=c("grey","black")\[1+EU\]> plot(iflo)

也可以使用D3js可视化

> library( networkD3 )
> simpleNetwork (df)

下一个问题是向网络添加一个顶点。最简单的方法是通过邻接矩阵实现概率

> flo2\["f","v"\]=1> flo2\["v","f"\]=1

然后,我们进行集中度测量。

目的是了解它们之间的关系。

 

betweenness(ilo)
 
> cor(base)
betw close deg eig
betw 1.0000000 0.5763487 0.8333763 0.6737162close 0.5763487 1.0000000 0.7572778 0.7989789deg 0.8333763 0.7572778 1.0000000 0.9404647eig 0.6737162 0.7989789 0.9404647 1.0000000

可以使用层次聚类图来可视化集中度度量

hclust(dist( ase  ,


+ method="ward")



> for(i in 1:4) rbase\[,i\]=rank(base\[,i\])

在此,特征向量测度非常接近顶点的度数。

最后,寻找聚类(以防这些家庭之间爆发战争)

> kc <- fastgreedy.community ( iflo )

在这里,我们有3类

相关文章
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
294 0
|
3月前
|
机器学习/深度学习 数据采集 传感器
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
【故障诊断】基于matlab BP神经网络电机数据特征提取与故障诊断研究(Matlab代码实现)
123 0
|
4月前
|
数据采集 存储 算法
MyEMS 开源能源管理系统:基于 4G 无线传感网络的能源数据闭环管理方案
MyEMS 是开源能源管理领域的标杆解决方案,采用 Python、Django 与 React 技术栈,具备模块化架构与跨平台兼容性。系统涵盖能源数据治理、设备管理、工单流转与智能控制四大核心功能,结合高精度 4G 无线计量仪表,实现高效数据采集与边缘计算。方案部署灵活、安全性高,助力企业实现能源数字化与碳减排目标。
129 0
|
23天前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
4月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
120 4
|
5月前
|
开发者
鸿蒙仓颉语言开发教程:网络请求和数据解析
本文介绍了在仓颉开发语言中实现网络请求的方法,以购物应用的分类列表为例,详细讲解了从权限配置、发起请求到数据解析的全过程。通过示例代码,帮助开发者快速掌握如何在网络请求中处理数据并展示到页面上,减少开发中的摸索成本。
鸿蒙仓颉语言开发教程:网络请求和数据解析
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
8月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
311 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化