Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(上)

简介: Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列

原文链接:http://tecdat.cn/?p=24092


前言


在量化金融中,我学习了各种时间序列分析技术以及如何使用它们。

通过发展我们的时间序列分析 (TSA) 方法组合,我们能够更好地了解已经发生的事情,_并对_未来做出更好、更有利的预测。示例应用包括预测未来资产收益、未来相关性/协方差和未来波动性。


在我们开始之前,让我们导入我们的 Python 库。

import pandas as pd
import numpy as np

让我们使用pandas包通过 API 获取一些示例数据。

# 原始调整后的收盘价
daa = pdDatrme({sx(sm)for sm i syos})
# 对数收益率
ls = log(dta/dat.sit(1)).dropa()


基础知识


什么是时间序列?


时间序列是按时间顺序索引的一系列数据点。——Wikipedia


平稳性


为什么我们关心平稳性?

  • 平稳时间序列 (TS) 很容易预测,因为我们可以假设未来的统计属性与当前的统计属性相同或成比例。
  • 我们在 TSA 中使用的大多数模型都假设协方差平稳。这意味着这些模型预测的描述性统计数据(例如均值、方差和相关性)仅在 TS 平稳时才可靠,否则无效。
“例如,如果序列随着时间的推移不断增加,样本均值和方差会随着样本规模的增加而增长,并且他们总是会低估未来时期的均值和方差。如果一个序列的均值和方差是没有明确定义,那么它与其他变量的相关性也不是。”

话虽如此,我们在金融中遇到的大多数 TS 都不是平稳的。因此,TSA 的很大一部分涉及识别我们想要预测的序列是否是平稳的,如果不是,我们必须找到方法将其转换为平稳的。(稍后会详细介绍)


自相关


本质上,当我们对时间序列建模时,我们将序列分解为三个部分:趋势、季节性/周期性和随机。随机分量称为残差或误差。它只是我们的预测值和观察值之间的差异。序列相关是指我们的 TS 模型的残差(误差)彼此相关。


为什么我们关心序列相关性?


我们关心序列相关性,因为它对我们模型预测的有效性至关重要,并且与平稳性有着内在的联系。回想一下,根据定义,_平稳_TS的残差(误差)是连续_不相关_的!如果我们在我们的模型中没有考虑到这一点,我们系数的标准误差就会被低估,从而夸大了我们的 T 统计量。结果是太多的 1 类错误,即使原假设为真,我们也会拒绝原假设!通俗地说,忽略自相关意味着我们的模型预测将是胡说八道,我们可能会得出关于模型中自变量影响的错误结论。


白噪声和随机游走


白噪声是我们需要了解的第一个时间序列模型(TSM)。根据定义,作为白噪声过程的时间序列具有连续不相关的误差,这些误差的预期平均值等于零。对连续不相关的误差的另一种描述是,独立和相同分布(i.i.d.)。这一点很重要,因为如果我们的TSM是合适的,并且成功地捕捉了基本过程,我们模型的残差将是i.i.d.,类似于白噪声过程。因此,TSA的一部分实际上是试图将一个模型适合于时间序列,从而使残差序列与白噪声无法区分。

让我们模拟一个白噪声过程并查看它。下面我介绍一个方便的函数,用于绘制时间序列和直观地分析序列相关性。

我们可以轻松地对白噪声过程进行建模并输出 TS 图检查。

np.random.seed(1)
# 绘制离散白噪声的曲线
ads = radooral(size=1000)
plot(ads, lags=30)


高斯白噪声


我们可以看到该过程似乎是随机的并且以零为中心。自相关 (ACF) 和偏自相关 (PACF) 图也表明没有显着的序列相关。请记住,我们应该在自相关图中看到大约 5% 的显着性,这是由于从正态分布采样的纯偶然性。下面我们可以看到 QQ 和概率图,它们将我们的数据分布与另一个理论分布进行了比较。在这种情况下,该理论分布是标准正态分布。显然,我们的数据是随机分布的,并且应该遵循高斯(正常)白噪声。

p("nmean: {:.3f}\\{:.3f}\\stde: {:.3f}"
.format(ademean(), nerva(), der.td()))

随机游走的意义在于它是非平稳的,因为观测值之间的协方差是时间相关的。如果我们建模的 TS 是随机游走,则它是不可预测的。

让我们使用“random”函数从标准正态分布中采样来模拟随机游走。

# 没有漂移的随机行走
np.rao.sed(1)
n = 1000
x = w = np.aonral(size=n)
for t in rnge(_sples):
    x\[t\] = x\[t-1\] + w\[t\]
splt(x, las=30)


无漂移的随机行走


显然,我们的 TS 不是平稳的。让我们看看随机游走模型是否适合我们的模拟数据。回想一下随机游走是xt = xt-1 + wt。使用代数我们可以说xt - xt-1 = wt。因此,我们随机游走系列的第一个差异应该等于白噪声过程,我们可以在我们的 TS 上使用“ np.diff()” 函数,看看这是否成立。

# 模拟的随机游走的第一个差值
plt(p.dffx), las=30)

随机行走的一阶差分


我们的定义成立,因为这看起来与白噪声过程完全一样。如果我们对 SPY 价格的一阶差分进行随机游走会怎么样?


点击标题查阅往期内容


R语言ARIMA-GARCH波动率模型预测股票市场苹果公司日收益率时间序列


01

02

03

04




# SPY价格的一阶差分
plt(diff(dt.PY), lag=30)

将随机行走模型拟合到ETF价格


它与白噪声非常相似。但是,请注意 QQ 和概率图的形状。这表明该过程接近正态分布,但具有“重尾”。 ACF 和 PACF 在滞后 1、5?、16?、18 和 21 附近似乎也存在一些显着的序列相关性。这意味着应该有更好的模型来描述实际的价格变化过程。


线性模型


线性模型又称趋势模型,代表了一个可以用直线作图的TS。其基本方程为。

在这个模型中,因变量的值由β系数和一个单一的自变量--时间决定。一个例子是,一家公司的销售额在每个时间段都会增加相同的数量。让我们来看看下面的一个特制的例子。在这个模拟中,我们假设坚定的ABC公司在每个时间段的销售额为-50.00元(β0或截距项)和+25.00元(β1)。

# 模拟线性趋势
# 例子 公司ABC的销售额默认为-50元,在每个时间步长为+25元
w = n.anom.ann(100)
y = nppt_lke(w)
b0 = -50.
b1 = 25.
for t in rge(lnw)):
    y\[t\] = b0 + b1*t + w\[t\]
    
 plt(y, lags=ls)

线性趋势模型模拟


在这里我们可以看到模型的残差是相关的,并且作为滞后的函数线性减少。分布近似正态。在使用此模型进行预测之前,我们必须考虑并消除序列中存在的明显自相关。PACF 在滞后 1 处的显着性表明_自回归_ 模型可能是合适的。


对数线性模型


这些模型与线性模型类似,只是数据点形成了一个指数函数,代表了相对于每个时间步的恒定变化率。例如,ABC公司的销售额在每个时间步长增加X%。当绘制模拟的销售数据时,你会得到一条看起来像这样的曲线。

# 模拟ABC的指数式增长
# 日期
pdat_rge('2007-01-01', '2012-01-01', freq='M')
# 假设销售额以指数速度增长
ale = \[exp( x/12 ) for x inage1, len(id)+1)\]
# 创建数据框架并绘图
df = d.ataame(sals, ix=x)
plt()

模拟指数函数


然后我们可以通过采用销售额的自然对数来转换数据。现在线性回归拟合数据。

# ABC对数销售 
indexid.plot()

指数函数的自然对数


如前所述,这些模型有一个致命的弱点。它们假设连续不相关的误差,正如我们在线性模型的例子中看到的那样。在现实生活中,TS数据通常会违反我们的平稳假设,这使我们转向自回归模型。


自回归模型 - AR(p)


当因变量针对自身的一个或多个滞后值进行回归时,该模型称为自回归模型。公式如下所示:

AR (P) 模型


当您描述 模型的“阶”时,例如阶“p”的 AR 模型 p 表示模型中使用的滞后变量的数量。例如,AR(2) 模型或_二阶_自回归模型如下所示:

AR (2) 模型


这里,alpha (a) 是系数,omega (w) 是白噪声项。在 AR 模型中,Alpha 不能等于 0。请注意,alpha 设置为 1 的 AR(1) 模型是_随机游走_ ,因此不是平稳的。

AR(1) 模型,ALPHA = 1;随机漫步

让我们模拟一个 alpha 设置为 0.6 的 AR(1) 模型

# 模拟一个α=0.6的AR(1)过程
rndm.sed(1)
n_sams = int(1000)
a = 0.6
x = w = n.amma(siz=_apes)
for t in rane(n_saps):
    x\[t\] = a*x\[t-1\] + w\[t\]
    
plot(x, gs=lgs)


Python 用ARIMA、GARCH模型预测分析股票市场收益率时间序列(中):https://developer.aliyun.com/article/1490525?spm=a2c6h.13148508.setting.33.658d4f0eueN6WO

相关文章
|
1天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
3天前
|
数据采集 存储 JSON
Python爬虫开发中的分析与方案制定
Python爬虫开发中的分析与方案制定
|
9天前
|
存储 数据处理 Python
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第27天】在科学计算和数据分析领域,Python凭借简洁的语法和强大的库支持广受欢迎。NumPy和SciPy作为Python科学计算的两大基石,提供了高效的数据处理和分析工具。NumPy的核心功能是N维数组对象(ndarray),支持高效的大型数据集操作;SciPy则在此基础上提供了线性代数、信号处理、优化和统计分析等多种科学计算工具。结合使用NumPy和SciPy,可以显著提升数据处理和分析的效率,使Python成为科学计算和数据分析的首选语言。
19 3
|
10天前
|
存储 机器学习/深度学习 算法
Python科学计算:NumPy与SciPy的高效数据处理与分析
【10月更文挑战第26天】NumPy和SciPy是Python科学计算领域的两大核心库。NumPy提供高效的多维数组对象和丰富的数学函数,而SciPy则在此基础上提供了更多高级的科学计算功能,如数值积分、优化和统计等。两者结合使Python在科学计算中具有极高的效率和广泛的应用。
28 2
|
11天前
|
设计模式 开发者 Python
Python编程中的设计模式:工厂方法模式###
本文深入浅出地探讨了Python编程中的一种重要设计模式——工厂方法模式。通过具体案例和代码示例,我们将了解工厂方法模式的定义、应用场景、实现步骤以及其优势与潜在缺点。无论你是Python新手还是有经验的开发者,都能从本文中获得关于如何在实际项目中有效应用工厂方法模式的启发。 ###
|
2天前
|
Python
不容错过!Python中图的精妙表示与高效遍历策略,提升你的编程艺术感
本文介绍了Python中图的表示方法及遍历策略。图可通过邻接表或邻接矩阵表示,前者节省空间适合稀疏图,后者便于检查连接但占用更多空间。文章详细展示了邻接表和邻接矩阵的实现,并讲解了深度优先搜索(DFS)和广度优先搜索(BFS)的遍历方法,帮助读者掌握图的基本操作和应用技巧。
13 4
|
2天前
|
设计模式 程序员 数据处理
编程之旅:探索Python中的装饰器
【10月更文挑战第34天】在编程的海洋中,Python这艘航船以其简洁优雅著称。其中,装饰器作为一项高级特性,如同船上的风帆,让代码更加灵活和强大。本文将带你领略装饰器的奥秘,从基础概念到实际应用,一起感受编程之美。
|
4天前
|
存储 人工智能 数据挖掘
从零起步,揭秘Python编程如何带你从新手村迈向高手殿堂
【10月更文挑战第32天】Python,诞生于1991年的高级编程语言,以其简洁明了的语法成为众多程序员的入门首选。从基础的变量类型、控制流到列表、字典等数据结构,再到函数定义与调用及面向对象编程,Python提供了丰富的功能和强大的库支持,适用于Web开发、数据分析、人工智能等多个领域。学习Python不仅是掌握一门语言,更是加入一个充满活力的技术社区,开启探索未知世界的旅程。
14 5
|
2天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
10 1
|
2天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
16 2
下一篇
无影云桌面