深入理解Python中的try-except语句,避免代码崩溃的噩梦

简介: 深入理解Python中的try-except语句,避免代码崩溃的噩梦

不管是开发Python、Java、JavaScript程序,还是写C++、PHP、GO、Ruby代码。都离不开try ... except异常处理。至于为什么,一切为了程序/产品/项目的稳定运行。如果一个程序项目或者说小一点一个文件中没有一个try-except处理,那么这个程序是有漏洞的、是不稳定的,很容易就会崩溃的。


而我们经常在代码开发时,特别是框架项目开发时,多个模块(文件)是会存在调用的情况,有单向的,也有双向的。而在此时如果程序发生异常,try-except只会基于当前位置进行信息打印(我说的是Except as e),很难去定位到模块调用,也就是源头文件的位置。今天分享的内容就是如何定位源头文件及行数。

Python try-except例子:


在这个例子中,我们将除法运算代码封装到了一个名为divide的函数中。函数的第一个参数a表示被除数,第二个参数b表示除数。在函数体中,我们使用try except语句对除以0的异常进行了处理。如果程序没有遇到ZeroDivisionError异常,那么函数将成功计算结果并返回。如果程序遇到ZeroDivisionError异常,我们将输出具体的错误信息并返回None。

def divide(a, b):
    try:
        c = a / b
        return c
    except ZeroDivisionError as e:
        print(e)
        return None
# 调用函数进行除法运算
result = divide(10, 0)
print(result)

输出结果:

Divide by zero error

定位源头文件(报错源)


大多时候我们在大工程或者复杂程序里,仅仅打印e只能简单的显示出程序出错的信息,有时我们仅仅根据这个信息很难定位,错误究竟发生在哪一个文件、哪一行代码,这时候比较笨的调试方法就是去掉try-except再跑一次让程序崩溃显示出具体的信息。


而比较快速便捷的定位错误信息就是定位到发生错误具体的行和文件,其实我们可以利用错误对象e,它其实是有相关的属性可调用的。

def divide(a, b):
    try:
        c = a / b
        return c
    except ZeroDivisionError as e:
        # 通过e的属性打印具体文件名称和行号
        print(f"Error Occurred At, 
              f"File: {e.__traceback__.tb_frame.f_code.co_filename}, "
              f"Line: {e.__traceback__.tb_lineno}")
        print("Divide by zero error")
        return None
# 调用函数进行除法运算
result = divide(10, 0)
print(result)

输出结果:

Error Occurred At, File: 文件路径, Line: 错误行号
Divide by zero error
None

或者还可以借助内置模块traceback实现

import traceback
import sys
def divide(a, b):
    try:
        c = a / b
        return c
    except ZeroDivisionError as e:
        # 借助traceback实现 
        tb_list = traceback.extract_tb(sys.exc_info()[2])
        filename, line_no, func_name, code_str = tb_list[-1]
        print(f"Error Occurred At, 
              f"File: {filename}, "
              f"Line: {line_no}")
        print("Divide by zero error")
        return None
# 调用函数进行除法运算
result = divide(10, 0)
print(result)

进阶用法


这个时候还会有一些问题,就是源头报错文件是一个三方库或者内置库,比如文件位置是python环境site-packages中,那我们打印出来并没有太大的用处,我们想打印的是我们自己写的代码报错位置,而不是内置模块或安装的第三方模块报错的位置信息,只有找到自定义代码位置,才好进行优化修正。

可以使用traceback.extract_stack()替换traceback.extract_tb(),以排除第三方库的源代码位置。

import traceback
import sys
def divide(a, b):
    try:
        c = a / b
        return c
    except ZeroDivisionError as e:
        # 借助traceback实现 
        tb_list = traceback.extract_stack()[:-1]  # 最后一项是当前调用的位置,而不是异常发生的位置
        filename, line_no, func_name, code_str = tb_list[-1]
        print(f"Error Occurred At, 
              f"File: {filename}, "
              f"Line: {line_no}")
        print("Divide by zero error")
        return None
# 调用函数进行除法运算
result = divide(10, 0)
print(result)

使用traceback.extract_stack()方法获取异常发生的完整堆栈信息。然后,使用list slicing来去掉最后一个元素,因为这个元素代表当前调用的位置,而不是异常发生的位置。最后一个元素通常是包含你的调用代码的位置,所以你不想把它包含进来。然后,从可用的堆栈信息中提取最后一个源代码文件名、行号、函数名和代码行来确定异常发生的位置。


这个方法不会包含第三方库的源代码位置,并且只会提取与你的代码相关的源代码位置。


还可以使用Python标准库中的inspect模块的currentframe()函数来获取当前帧。然后,你可以使用traceback.extract_stack()方法来提取堆栈信息,然后使用堆栈信息来逐步比较源文件路径,以找到与当前工程相关的源文件路径。

import os
import inspect
import traceback
def get_project_traceback():
    # 获取当前帧
    frame = inspect.currentframe()
    # 提取堆栈信息(前两个元素是filter和get_project_traceback函数本身的位置)
    tb_list = traceback.extract_stack(frame)[2:]
    # 找到与当前工程相关的源文件路径
    for filename, line_no, func_name, code_str in reversed(tb_list):
        if os.getcwd() in filename:
            return filename, line_no, func_name, code_str
    # 如果都没有找到,则返回最后一个源文件
    filename, line_no, func_name, code_str = tb_list[-1]
    return filename, line_no, func_name, code_str
def divide(a, b):
    try:
        c = a / b
        return c
    except ZeroDivisionError as e:
        filename, line_no, func_name, code_str = get_project_traceback()
        print(f"Error Occurred At, 
              f"File: {filename}, "
              f"Line: {line_no}")
        print("Divide by zero error")
        return None
# 调用函数进行除法运算
result = divide(10, 0)
print(result)

上述代码中,get_project_traceback函数首先使用inspect.currentframe()函数获取当前帧,然后使用traceback.extract_stack(frame)方法提取堆栈信息,前两个元素是filter和get_project_traceback函数本身的位置,所以从第3个元素开始获取。接着,函数使用os.getcwd()来获取当前工程的路径,并逐个比较每个源文件路径,找到与当前工程相关的源文件路径。如果都没有找到,则返回最后一个源文件。


在主代码块中,通过调用get_project_traceback函数来获取与当前工程相关的堆栈信息。当一个异常发生时,该代码段将获取该异常的信息并使用get_project_traceback函数来打印与当前工程相关的堆栈信息。

相关文章
|
7天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
10天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
6天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
14 1
|
11天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
7天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
11天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
25 5
|
9天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
20 2
|
11天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
33 4
|
12天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
11天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
23 2