【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支

简介: 【AI Agent系列】【阿里AgentScope框架】3. 深入源码:Pipeline模块如何组织多智能体间的数据流?- 顺序结构与条件分支
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


上篇文章(【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互)中我们简单使用了一下AgentScope的Pipeline模块,方便地实现了一个多智能体交互应用。今天我们来深入Pipeline的源码,来看下AgentScope都提供了哪些类型的Pipeline,以及它的实现原理是什么。

0. Pipeline概念简介

我的个人简单理解:AgentScope为了方便大家对智能体间交互逻辑的编排,特地封装了 Pipeline 模块,其中包含了一系列地 Pipeline ,就像编程语言中的控制结构:顺序结构、条件分支、循环结构等。利用这些 Pipeline ,大家可以很方便地实现多智能体间的交互逻辑控制。

1. Pipeline的基类:PipelineBase

class PipelineBase(Operator):
    r"""Base interface of all pipelines.
    The pipeline is a special kind of operator that includes
    multiple operators and the interaction logic among them.
    """
    def __init__(self) -> None:
        self.participants: List[Any] = []
    @abstractmethod
    def __call__(self, x: Optional[dict] = None) -> dict:
        """Define the actions taken by this pipeline.
        Args:
            x (Optional[`dict`], optional):
                Dialog history and some environment information
        Returns:
            `dict`: The pipeline's response to the input.
        """

基类只是实现了一个Pipeline的基本框架,所有类型的Pipeline都继承自这个基类,然后重写自己的__call__函数。

从这个基类的说明中也可以看到AgentScope对Pipeline的定义:The pipeline is a special kind of operator that includes multiple operators and the interaction logic among them.。Pipeline组合了一系列的operators和这些operators之间的交互逻辑。所谓的operators,其实就是我们所认识的Agent。

2. SequentialPipeline

这个Pipeline用来实现类似编程语言中的顺序执行结构。上篇文章中已经写过其源码了,所以在这里不再展开,感兴趣的可以去看一下:【AI Agent系列】【阿里AgentScope框架】2. Pipeline模块入门:使用Pipeline模块实现最简单的多智能体交互

3. IfElsePipeline

这个Pipeline用来实现类似编程语言中的 if-else 分支结构。

3.1 初始化参数

class IfElsePipeline(PipelineBase):
    def __init__(
        self,
        condition_func: Callable[[dict], bool],
        if_body_operators: Operators,
        else_body_operators: Operators = placeholder,
    ) -> None:
        self.condition_func = condition_func
        self.if_body_operator = if_body_operators
        self.else_body_operator = else_body_operators
        self.participants = [self.if_body_operator] + [self.else_body_operator]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return ifelsepipeline(
            condition_func=self.condition_func,
            if_body_operators=self.if_body_operator,
            else_body_operators=self.else_body_operator,
            x=x,
        )

其初始化接收三个参数,比较好理解:

  • condition_func:判断条件
  • if_body_operators:满足判断条件时执行的Agent
  • else_body_operators:不满足判断条件时执行的Agent

3.2 实现原理

重写__call__函数,调用了 ifelsepipeline 函数:

def ifelsepipeline(
    condition_func: Callable,
    if_body_operators: Operators,
    else_body_operators: Operators = placeholder,
    x: Optional[dict] = None,
) -> dict:
    if condition_func(x):
        return _operators(if_body_operators, x)
    else:
        return _operators(else_body_operators, x)

里面 if condition_func(x) 来判断是否满足设置的判断条件,然后选择执行 if_body_operators 还是 else_body_operators

这里的 if_body_operators 或者 else_body_operators 可以是一系列的 operators,通过 _operators函数来进行判断和执行:

def _operators(operators: Operators, x: Optional[dict] = None) -> dict:
    """Syntactic sugar for executing a single operator or a sequence of
    operators."""
    if isinstance(operators, Sequence):
        return sequentialpipeline(operators, x)
    else:
        return operators(x)

从这个函数的实现可以看到,如果operators是一系列operator,则会对它们执行 sequentialpipeline 顺序结构

4. SwitchPipeline

这个Pipeline用来实现类似编程语言中的 switch-case 分支结构。

4.1 初始化参数

class SwitchPipeline(PipelineBase):
    def __init__(
        self,
        condition_func: Callable[[dict], Any],
        case_operators: Mapping[Any, Operators],
        default_operators: Operators = placeholder,
    ) -> None:
        self.condition_func = condition_func
        self.case_operators = case_operators
        self.default_operators = default_operators
        self.participants = list(self.case_operators.values()) + [
            self.default_operators,
        ]
    def __call__(self, x: Optional[dict] = None) -> dict:
        return switchpipeline(
            condition_func=self.condition_func,
            case_operators=self.case_operators,
            default_operators=self.default_operators,
            x=x,
        )

该Pipeline的初始化接收三个参数:

  • condition_func:判断条件
  • case_operators:满足case条件时执行的Agent,注意,这里的case_operators是个Mapping映射列表,key为case条件,value为该case下需要执行的operators
  • default_operators:不满足任何一个case条件时执行的Agent

4.2 实现原理

重写__call__函数,调用了 switchpipeline 函数:

def switchpipeline(
    condition_func: Callable[[Any], Any],
    case_operators: Mapping[Any, Operators],
    default_operators: Operators = placeholder,
    x: Optional[dict] = None,
) -> dict:
    target_case = condition_func(x)
    if target_case in case_operators:
        return _operators(case_operators[target_case], x)
    else:
        return _operators(default_operators, x)

首先是 target_case = condition_func(x),根据判断条件找出当前的case条件,然后根据case条件找出需要执行的operators(case_operators[target_case]),通过 _operators 函数来进行顺序执行。

5. 总结

今天这篇文章我们主要通过阅读源码,学习了AgentScope中Pipeline模块的基类、顺序Pipeline和条件Pipeline的实现。所谓的顺序Pipeline就是将Agent按顺序执行,消息按顺序传递。条件Pipeline就是用户给出判定条件,以及每种条件下应该运行的Agents,然后在满足某种条件的时候顺序执行该条件下的Agents。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • +v: jasper_8017 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
30天前
|
人工智能 开发框架 安全
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
Smolagents 是 Hugging Face 推出的轻量级开源库,旨在简化智能代理的构建过程,支持多种大语言模型集成和代码执行代理功能。
278 69
Smolagents:三行代码就能开发 AI 智能体,Hugging Face 开源轻量级 Agent 构建库
|
8天前
|
人工智能 自然语言处理 语音技术
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
FilmAgent 是由哈工大与清华联合推出的AI电影自动化制作工具,通过多智能体协作实现从剧本生成到虚拟拍摄的全流程自动化。
89 10
FilmAgent:多智能体共同协作制作电影,哈工大联合清华推出 AI 驱动的自动化电影制作工具
|
21天前
|
机器学习/深度学习 人工智能 自然语言处理
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
Agent Laboratory 是由 AMD 和约翰·霍普金斯大学联合推出的自主科研框架,基于大型语言模型,能够加速科学发现、降低成本并提高研究质量。
195 23
Agent Laboratory:AI自动撰写论文,AMD开源自动完成科研全流程的多智能体框架
|
19天前
|
数据采集 人工智能 安全
1000多个智能体组成,AI社会模拟器MATRIX-Gen助力大模型自我进化
在人工智能领域,大型语言模型(LLMs)的发展迅速,但如何提升其指令遵循能力仍是一大挑战。论文提出MATRIX-Gen,一个基于多智能体模拟的AI社会模拟器。MATRIX-Gen通过模拟智能体交互生成多样化的现实场景,不依赖预定义模板,从而合成高质量指令数据。它包括MATRIX模拟器和MATRIX-Gen指令生成器,能生成监督微调、偏好微调及特定领域的数据集。实验表明,使用MATRIX-Gen合成的数据集微调后的模型在多个基准测试中表现出色,显著优于现有方法。然而,该方法也面临智能体和场景规模对数据质量的影响等挑战。
68 33
|
1月前
|
人工智能 API
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
MMedAgent 是专为医疗领域设计的多模态AI智能体,支持多种医疗任务,包括医学影像处理、报告生成等,性能优于现有开源方法。
127 19
MMedAgent:专为医疗领域设计的多模态 AI 智能体,支持医学影像处理、报告生成等多种医疗任务
|
27天前
|
存储 人工智能 自然语言处理
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
AI Agent以自主性和智能化为核心,适合复杂任务的动态执行;而SaaS工具则注重服务的完整性和易用性,适合标准化业务需求。
92 14
AI Agent与SaaS工具协同发展的未来:企业智能化的全新范式
|
21天前
|
人工智能 API UED
AI智能体再进化,工作流怎么玩?阿里云百炼上手教程
本次分享由讲师林粒粒呀介绍如何快速制作AI智能工具,特别是利用阿里云百炼平台创建工作流。通过简单的拖拽操作,小白用户也能轻松上手,实现从PPT主题到大纲的自动生成,并能一次性生成多个版本。借助API和Python脚本,还可以将Markdown格式的大纲转换为本地PPT文件。整个流程展示了AI智能体在实际应用中的高效性和实用性,帮助用户大幅提升工作效率。
115 31
|
1月前
|
机器学习/深度学习 人工智能 算法
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
FinRobot 是一个开源的 AI Agent 平台,专注于金融领域的应用,通过大型语言模型(LLMs)构建复杂的金融分析和决策工具,提供市场预测、文档分析和交易策略等多种功能。
169 13
FinRobot:开源的金融专业 AI Agent,提供市场预测、报告分析和交易策略等金融解决方案
|
21天前
|
人工智能 自然语言处理 API
用AI Agent做一个法律咨询助手,罗老看了都直呼内行 feat.通义千问大模型&阿里云百炼平台
本视频介绍如何使用通义千问大模型和阿里云百炼平台创建一个法律咨询助手AI Agent。通过简单配置,无需编写代码或训练模型,即可快速实现智能问答功能。演示包括创建应用、配置知识库、上传民法典文档、构建知识索引等步骤。最终,用户可以通过API调用集成此AI Agent到现有系统中,提供专业的法律咨询服务。整个过程简便高效,适合快速搭建专业领域的小助手。
151 21
|
1月前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
168 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统

热门文章

最新文章