【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序

简介: 【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


这是我们学习的第四款智能体框架了。

前面我们学习了 AutoGPT、MetaGPT、LangGraph 等智能体应用开发框架,各有优缺点。今天我们开始学习AgentScope这一款多智能体开发框架。在AI快速发展的现在,多上手体验一下各个框架,更能加深对AI大模型应用开发中各种知识的深入理解。AI界大佬吴恩达也督促大家今年关注 AI Agent 工作流的发展和应用。所以,卷起来吧,多看看,多用用,没坏处。

0. AgentScope简介

AgentScope是阿里开源的一款全新的多智能体协同的Multi-Agent应用框架,旨在帮助开发者更轻松地构建基于大语言模型的多智能体应用程序。它具有以下特点:

  1. 易用性:AgentScope注重易用性,为开发者提供了简洁明了的编程模式,丰富的语法工具和内置资源,使得编程多智能体应用程序变得更加轻松愉快。
  2. 鲁棒性:AgentScope集成了全面的服务级重试机制和规则性修正工具,以处理LLMs响应中的明显格式问题。此外,AgentScope还提供了可定制的容错配置,使开发者能够通过参数来自定义容错机制。
  3. 支持多模态数据:AgentScope支持多模态数据在对话呈现、消息传输和数据存储中的应用,通过统一的基于URL的属性来解耦多模态数据的传输和存储,从而最大限度地减少了消息在每个智能体内的复杂性。
  4. 分布式部署:针对分布式应用程序带来的额外编程难题和系统设计挑战,AgentScope也提供了支持。

1. 安装

因为我的目的是学习,不光要会用,有时候还会深入源码去看一下实现原理,所以我这里使用源码安装。其它安装方法请参考官方安装教程

# 从GitHub上拉取AgentScope的源代码
git clone https://github.com/modelscope/agentscope.git
cd agentscope
# 针对本地化的multi-agent应用
pip install -e .

如果报错 Timeout:

使用以下命令重新安装:

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

2. 快速上手 - 快速跑通第一个Demo

2.1 完整代码

老规矩,先上完整代码,大家复制粘贴,先跑通再说。

import agentscope
import os
openai_api_key = os.getenv('OPENAI_API_KEY')
# 一次性初始化多个模型配置
openai_cfg_dict = {
    "config_name": "openai_cfg", # A unique name for the model config.
    "model_type": "openai",         # Choose from "openai", "openai_dall_e", or "openai_embedding".
    "model_name": "gpt-3.5-turbo",   # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
    "api_key": openai_api_key,       # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])
from agentscope.agents import DialogAgent, UserAgent
# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()
x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)

运行结果:

2.2 代码详解

下面来解释下上面的代码。

2.2.1 配置

像其它框架一样,我们也需要配置我们使用的大模型以及API Key等参数。AgentScope的配置方式是创建一个字典类型的变量,在变量里填入相应值,然后通过初始化接口传递给AgentScope:

openai_cfg_dict = {
    "config_name": "openai_cfg", # A unique name for the model config.
    "model_type": "openai",         # Choose from "openai", "openai_dall_e", or "openai_embedding".
    "model_name": "gpt-3.5-turbo",   # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
    "api_key": openai_api_key,       # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])

注意看下配置的Key值:config_name, model_type, model_nameapi_key。通过 agentscope.init 函数设置进去。

关于配置的疑问

没搞懂的是,这里的配置是必须传入?还是只要环境变量中存在了 OPENAI_API_KEY 值就可以不用传 “api_key” ?

  • 为什么有这个疑问:因为我并没有找到在哪里设置 代理地址,而我的API Key不是原生的OpenAI Key,必须通过代理才能使用OpenAI的接口。但是以上代码在没有传递代理地址的情况下竟然运行成功了,那么,是不是只要环境变量中有了,不传递这个config也行?
  • 我将api_key去掉,也运行成功了…
  • 不传模型名字倒是不行,会报错:

2.2.2 创建智能体

接下来,代码中创建了两个智能体:一个对话智能体DialogAgent 和 一个用户智能体 userAgent

# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()

2.2.3 运行智能体

然后是运行智能体:

x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)

从运行效果来看,对话智能体就是与用户进行对话。用户智能体,其实就是接收用户的输入,让人参与其中进行干预。

好了,本文就先写到这里,主要是带大家认识一下AgentScope,并搭建好运行环境。运行了一个简单的示例,让大家对AgentScope的使用有一个简单的认识,没有深入。后面我们随着更多案例的实践,会逐渐深入探索AgentScope的原理及应用。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1375 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
2月前
|
人工智能 Java 开发者
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
JManus是阿里开源的Java版OpenManus,基于Spring AI Alibaba框架,助力Java开发者便捷应用AI技术。支持多Agent框架、网页配置、MCP协议及PLAN-ACT模式,可集成多模型,适配阿里云百炼平台与本地ollama。提供Docker与源码部署方式,具备无限上下文处理能力,适用于复杂AI场景。当前仍在完善模型配置等功能,欢迎参与开源共建。
1403 58
阿里出手!Java 开发者狂喜!开源 AI Agent 框架 JManus 来了,初次见面就心动~
|
2月前
|
人工智能 数据处理 云栖大会
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
375 9
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
|
7月前
|
机器学习/深度学习 人工智能 编解码
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
万相首尾帧模型是阿里通义开源的14B参数规模视频生成模型,基于DiT架构和高效视频压缩VAE,能够根据首尾帧图像自动生成5秒720p高清视频,支持多种风格变换和细节复刻。
1460 9
AI视频生成也能自动补全!Wan2.1 FLF2V:阿里通义开源14B视频生成模型,用首尾两帧生成过渡动画
|
4月前
|
人工智能 搜索推荐 API
AI-Compass DeepSearch深度搜索生态:集成阿里ZeroSearch、字节DeerFlow、MindSearch等前沿平台,实现超越传统关键词匹配的智能信息检索革命
AI-Compass DeepSearch深度搜索生态:集成阿里ZeroSearch、字节DeerFlow、MindSearch等前沿平台,实现超越传统关键词匹配的智能信息检索革命
AI-Compass DeepSearch深度搜索生态:集成阿里ZeroSearch、字节DeerFlow、MindSearch等前沿平台,实现超越传统关键词匹配的智能信息检索革命
|
3月前
|
机器学习/深度学习 数据采集 人工智能
阿里开源即封神,一上线就斩获4000+ star背后的真相,WebAgent多步骤智能网搜神器,颠覆你对AI的信息检索印象!
WebAgent 是阿里巴巴开源的多步骤智能网搜神器,包含 WebWalker、WebDancer、WebSailor 等模块,支持复杂推理与长上下文信息检索,GitHub 已获 4.7k star,颠覆传统 AI 搜索方式。
509 1
|
5月前
|
人工智能 IDE 程序员
阿里也出手了!灵码AI IDE问世
各位程序员小伙伴们,是不是还在为写代码头秃?别担心,阿里云带着它的通义灵码 AI IDE 来拯救你啦!
2531 3
|
5月前
|
人工智能 IDE 程序员
阿里也出手了!灵码AI IDE问世
各位程序员小伙伴们,是不是还在为写代码头秃?别担心,阿里云带着它的通义灵码 AI IDE 来拯救你啦! 相信不少小伙伴已经在VSCode、JetBrains IDE等主流开发工具中安装过通义灵码这款插件。 通义灵码插件全网总下载量超 1500 万,开发者采纳代码行数超 30 亿且每月增速 20%-30%。 今天我们要说的不是这款插件,而是阿里刚出的“为AI而生的灵码IDE”。
623 0
|
9月前
|
人工智能 自然语言处理 API
ComfyUI-Copilot:阿里把AI助手塞进ComfyUI:一句话生成工作流,自动布线/调参/选模型,小白秒变大神!
ComfyUI-Copilot 是阿里推出的基于 ComfyUI 的 AI 智能助手,支持自然语言交互、智能节点推荐和自动工作流辅助,降低开发门槛并提升效率。
2468 9
ComfyUI-Copilot:阿里把AI助手塞进ComfyUI:一句话生成工作流,自动布线/调参/选模型,小白秒变大神!

热门文章

最新文章

下一篇
oss云网关配置