【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序

简介: 【AI Agent系列】【阿里AgentScope框架】0. 快速上手:AgentScope框架简介与你的第一个AgentScope程序
  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:


这是我们学习的第四款智能体框架了。

前面我们学习了 AutoGPT、MetaGPT、LangGraph 等智能体应用开发框架,各有优缺点。今天我们开始学习AgentScope这一款多智能体开发框架。在AI快速发展的现在,多上手体验一下各个框架,更能加深对AI大模型应用开发中各种知识的深入理解。AI界大佬吴恩达也督促大家今年关注 AI Agent 工作流的发展和应用。所以,卷起来吧,多看看,多用用,没坏处。

0. AgentScope简介

AgentScope是阿里开源的一款全新的多智能体协同的Multi-Agent应用框架,旨在帮助开发者更轻松地构建基于大语言模型的多智能体应用程序。它具有以下特点:

  1. 易用性:AgentScope注重易用性,为开发者提供了简洁明了的编程模式,丰富的语法工具和内置资源,使得编程多智能体应用程序变得更加轻松愉快。
  2. 鲁棒性:AgentScope集成了全面的服务级重试机制和规则性修正工具,以处理LLMs响应中的明显格式问题。此外,AgentScope还提供了可定制的容错配置,使开发者能够通过参数来自定义容错机制。
  3. 支持多模态数据:AgentScope支持多模态数据在对话呈现、消息传输和数据存储中的应用,通过统一的基于URL的属性来解耦多模态数据的传输和存储,从而最大限度地减少了消息在每个智能体内的复杂性。
  4. 分布式部署:针对分布式应用程序带来的额外编程难题和系统设计挑战,AgentScope也提供了支持。

1. 安装

因为我的目的是学习,不光要会用,有时候还会深入源码去看一下实现原理,所以我这里使用源码安装。其它安装方法请参考官方安装教程

# 从GitHub上拉取AgentScope的源代码
git clone https://github.com/modelscope/agentscope.git
cd agentscope
# 针对本地化的multi-agent应用
pip install -e .

如果报错 Timeout:

使用以下命令重新安装:

pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple

2. 快速上手 - 快速跑通第一个Demo

2.1 完整代码

老规矩,先上完整代码,大家复制粘贴,先跑通再说。

import agentscope
import os
openai_api_key = os.getenv('OPENAI_API_KEY')
# 一次性初始化多个模型配置
openai_cfg_dict = {
    "config_name": "openai_cfg", # A unique name for the model config.
    "model_type": "openai",         # Choose from "openai", "openai_dall_e", or "openai_embedding".
    "model_name": "gpt-3.5-turbo",   # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
    "api_key": openai_api_key,       # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])
from agentscope.agents import DialogAgent, UserAgent
# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()
x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)

运行结果:

2.2 代码详解

下面来解释下上面的代码。

2.2.1 配置

像其它框架一样,我们也需要配置我们使用的大模型以及API Key等参数。AgentScope的配置方式是创建一个字典类型的变量,在变量里填入相应值,然后通过初始化接口传递给AgentScope:

openai_cfg_dict = {
    "config_name": "openai_cfg", # A unique name for the model config.
    "model_type": "openai",         # Choose from "openai", "openai_dall_e", or "openai_embedding".
    "model_name": "gpt-3.5-turbo",   # The model identifier used in the OpenAI API, such as "gpt-3.5-turbo", "gpt-4", or "text-embedding-ada-002".
    "api_key": openai_api_key,       # Your OpenAI API key. If unset, the environment variable OPENAI_API_KEY is used.
}
agentscope.init(model_configs=[openai_cfg_dict])

注意看下配置的Key值:config_name, model_type, model_nameapi_key。通过 agentscope.init 函数设置进去。

关于配置的疑问

没搞懂的是,这里的配置是必须传入?还是只要环境变量中存在了 OPENAI_API_KEY 值就可以不用传 “api_key” ?

  • 为什么有这个疑问:因为我并没有找到在哪里设置 代理地址,而我的API Key不是原生的OpenAI Key,必须通过代理才能使用OpenAI的接口。但是以上代码在没有传递代理地址的情况下竟然运行成功了,那么,是不是只要环境变量中有了,不传递这个config也行?
  • 我将api_key去掉,也运行成功了…
  • 不传模型名字倒是不行,会报错:

2.2.2 创建智能体

接下来,代码中创建了两个智能体:一个对话智能体DialogAgent 和 一个用户智能体 userAgent

# 创建一个对话智能体和一个用户智能体
dialogAgent = DialogAgent(name="assistant", model_config_name="openai_cfg", sys_prompt="You are a helpful ai assistant")
userAgent = UserAgent()

2.2.3 运行智能体

然后是运行智能体:

x = None
x = dialogAgent(x)
print("diaglogAgent: \n", x)
x = userAgent(x)
print("userAgent: \n", x)

从运行效果来看,对话智能体就是与用户进行对话。用户智能体,其实就是接收用户的输入,让人参与其中进行干预。

好了,本文就先写到这里,主要是带大家认识一下AgentScope,并搭建好运行环境。运行了一个简单的示例,让大家对AgentScope的使用有一个简单的认识,没有深入。后面我们随着更多案例的实践,会逐渐深入探索AgentScope的原理及应用。

如果觉得本文对你有帮助,麻烦点个赞和关注呗 ~~~


  • 大家好,我是 同学小张,日常分享AI知识和实战案例
  • 欢迎 点赞 + 关注 👏,持续学习持续干货输出
  • 一起交流💬,一起进步💪。
  • 微信公众号也可搜【同学小张】 🙏

本站文章一览:

相关文章
|
2天前
|
人工智能 NoSQL Redis
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
介绍Collaborative Gym,一个专注于人机协作的框架,支持异步交互和多种任务环境。
45 14
Collaborative Gym:斯坦福人机协作框架开源!异步交互+三方感知,让你的AI学会主动补位
|
3天前
|
人工智能 自然语言处理 人机交互
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
Social Media Agent 是一款由 LangChain 推出的 AI 社交媒体内容管理工具,支持 Twitter 和 LinkedIn 平台,能快速生成高质量的帖子。
47 17
Social Media Agent:告别文案焦虑!AI自动生成高转化帖子,输入URL快速生成爆款文案
|
13天前
|
人工智能 自然语言处理 搜索推荐
浙大通义联手推出慢思考长文本生成框架OmniThink,让AI写作突破知识边界
随着大模型(LLMs)的发展,AI 写作取得了较大进展。然而,现有的方法大多依赖检索知识增强生成(RAG)和角色扮演等技术,其在信息的深度挖掘方面仍存在不足,较难突破已有知识边界,导致生成的内容缺乏深度和原创性。
|
9天前
|
人工智能 开发框架 机器人
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
AstrBot 是一个开源的多平台聊天机器人及开发框架,支持多种大语言模型和消息平台,具备多轮对话、语音转文字等功能。
2187 13
AstrBot:轻松将大模型接入QQ、微信等消息平台,打造多功能AI聊天机器人的开发框架,附详细教程
|
11天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
884 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
8天前
|
人工智能 开发框架 数据可视化
Eino:字节跳动开源基于Golang的AI应用开发框架,组件化设计助力构建AI应用
Eino 是字节跳动开源的大模型应用开发框架,帮助开发者高效构建基于大模型的 AI 应用。支持组件化设计、流式处理和可视化开发工具。
138 27
|
3天前
|
人工智能 自然语言处理 架构师
Praison AI:LangChain危险了!这个低代码框架让AI智能体「自主协作」,1行代码搞定任务编排
Praison AI 是一个开源的多智能体框架,支持低代码创建和管理AI代理,提供多种流程类型和集成选项,适用于企业流程自动化、智能客服等场景。
76 18
|
27天前
|
存储 人工智能 自然语言处理
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
OmniThink 是浙江大学与阿里通义实验室联合开发的机器写作框架,通过模拟人类迭代扩展和反思过程,生成高质量长篇文章,显著提升知识密度和内容深度。
165 12
OmniThink:浙大联合阿里通义开源 AI 写作框架,基于深度思考扩展知识边界,实时展示思考过程
|
4天前
|
人工智能 编解码 vr&ar
Lumina-Video:上海 AI Lab 开源视频生成框架,动态程度可控,支持多分辨率
Lumina-Video 是由上海 AI Lab 和香港中文大学联合推出的高效视频生成框架,支持高质量视频生成、动态程度控制和多分辨率生成。
97 4
|
8天前
|
人工智能 负载均衡 搜索推荐
谷歌发布双思维AI Agent:像人类一样思考,重大技术突破!
谷歌近日推出基于“快慢思维”理论的双思维AI Agent系统,模仿人类大脑的两种思维模式:快速直观的Talker(系统1)和深思熟虑的Reasoner(系统2)。Talker负责日常对话与快速响应,Reasoner则处理复杂推理任务。该系统模块化设计,灵活高效,已在睡眠教练等场景中展现应用潜力,但仍面临工作负载平衡与推理准确性等挑战。论文详情见:https://arxiv.org/abs/2410.08328v1
38 1

热门文章

最新文章