Python 妙用运算符重载——玩出“点”花样来(上)

简介: Python 妙用运算符重载——玩出“点”花样来(上)

image.png

本篇的主角正是“点”,今天要用运算符重载来,把它玩出“点”花样来!那什么是运算符重载呢?

运算符重载

运算符重载是面向对象编程中的一个概念,它允许程序员为自定义类型(如类或结构体)定义特定的运算符行为,使得这些类的实例可以使用语言中预定义的运算符。在Python等编程语言中,运算符重载是一种强大的特性,它使得我们可以用更加自然和直观的方式处理自定义类型。在实际编程中,我们应该根据需要合理使用这一特性,以提高代码的质量和效率。

主角点类

class Point 这个类很简单,就两个属性:横坐标x和纵坐标y。

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __str__(self):
        return f'({self.x}, {self.y})'

测试:

>>> a = Point()
>>> a
Point(0, 0)
>>> str(a)
'(0, 0)'
>>> b = Point(2, 5)
>>> b
Point(2, 5)

对于只需要整数坐标的类,比如二维数组的行列坐标,本文主要讨论整数坐标值的坐标,可以在类初始化函数里加上类型判断:

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
        assert(isinstance(x, str) and isinstance(y, str))
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __str__(self):
        return f'({self.x}, {self.y})'

测试:

>>> p = Point(2, 5)
>>> p
Point(2, 5)
>>> q = Point(2.1, 5.5)
Traceback (most recent call last):
  File "<pyshell#25>", line 1, in <module>
    q = Point(2.1, 5.5)
  File "<pyshell#22>", line 4, in __init__
    assert(isinstance(x, int) and isinstance(y, int))
AssertionError
 

魔法方法

也称为特殊方法或双下划线方法,是python语言中的一种特殊方法,用于在类中实现一些特殊的功能。这些方法的名称始终以双下划线开头和结尾,比如上面点类定义时用到 __init__,__repr__,__str__。重载运算符时,我们就是靠魔法方法来重新定义运算符的,例如 __add__,__sub__,__mul__,__truediv__ 分别对应加减乘除四则运算。


在重载运算符前,再来学习几个其他类型的魔法方法:

__getitem__

__getitem__ 方法用于获取下标对应的值。

__setitem__

__setitem__ 方法用于设置下标对应的值。

定义完后,点类可以用下标0,1或者-2,-1来取值,和元组、列表等一样:obj[0], obj[1]。

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __getitem__(self, index):
        if index in range(-2,2):
            return self.y if index in (1,-1) else self.x
        raise IndexError("Index out of range")
    def __setitem__(self, index, value):
        if index in (0, -2):
            self.x = value
        elif index in (1, -1):
            self.y = value
        else:
            raise IndexError("Index out of range.")

测试:

>>> a = Point(1,2)
>>> a[0], a[1]
(1, 2)
>>> a[-1], a[-2]
(2, 1)
>>> a[0] = 5
>>> a
Point(5, 2)
>>> a[1] = 3
>>> a
Point(5, 3)
>>> [i for i in a]
[5, 3]
>>> x, y = a
>>> x
5
>>> y
3
>>> b = iter(a)
>>> next(b)
5
>>> next(b)
3
>>> next(b)
Traceback (most recent call last):
  File "<pyshell#67>", line 1, in <module>
    next(b)
StopIteration

__iter__

__next__

共同定义一个对象的迭代行为,迭代器必须实现__iter__()方法,该方法返回迭代器自身,或者返回一个新的迭代器对象。__next__()方法返回迭代器的下一个元素。

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
        self.index = 0
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __iter__(self):
        self.index = 0
        return self
    def __next__(self):
        if self.index < 2:
            result = self.y if self.index else self.x
            self.index += 1
            return result
        else:
            raise StopIteration

测试:

>>> a = Point(5, 3)
>>> x, y = a
>>> x, y
(5, 3)
>>> next(a)
Traceback (most recent call last):
  File "<pyshell#115>", line 1, in <module>
    next(a)
  File "<pyshell#111>", line 16, in __next__
    raise StopIteration
StopIteration
>>> a = Point(5, 3)
>>> next(a)
5
>>> next(a)
3
>>> a
Point(5, 3)
>>> a.x
5
>>> next(a)
Traceback (most recent call last):
  File "<pyshell#121>", line 1, in <module>
    next(a)
  File "<pyshell#111>", line 16, in __next__
    raise StopIteration
StopIteration
>>> a[0]
Traceback (most recent call last):
  File "<pyshell#122>", line 1, in <module>
    a[0]
TypeError: 'Point' object is not subscriptable
 

对于点类说,可迭代魔法方法完全可弃用;因为使用__getitem__方法和iter()函数已有此功能。

__len__

求长度的方法,原义就是计算可迭代对象元素的个数;点类的长度就是2。

    def __len__(self):
        return 2

__neg__

求相反数的方法,也就是单目的“ - ”符号;重载为横纵坐标都取相反数。

    def __neg__(self):
        return Point(-self.x, -self.y)

__pos__

这是单目的“ + ”符号,一般无需重新定义;但是我们还是把它重载成穿过点的横纵两条直线上所有的整数点坐标,还是有点象形的,如一个十字架。

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __pos__(self):
        n = 0
        while True:
            yield Point(n, self.y), Point(self.x, n)
            n += 1

测试:

>>> a = Point(2, 4)
>>> b = +a
>>> next(b)
(Point(0, 4), Point(2, 0))
>>> next(b)
(Point(1, 4), Point(2, 1))
>>> next(b)
(Point(2, 4), Point(2, 2))
>>> next(b)
(Point(3, 4), Point(2, 3))
>>> next(b)
(Point(4, 4), Point(2, 4))
>>> next(b)
(Point(5, 4), Point(2, 5))
>>> b = +a
>>> horizontal = [next(b)[0] for _ in range(5)]
>>> horizontal
[Point(0, 4), Point(1, 4), Point(2, 4), Point(3, 4), Point(4, 4)]
>>> b = +a
>>> vertical = [next(b)[1] for _ in range(5)]
>>> vertical
[Point(2, 0), Point(2, 1), Point(2, 2), Point(2, 3), Point(2, 4)] 
 

这种设计返回的点太多,使用并不方便。有必要改成只返回上下左右相邻的四个点:

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __pos__(self):
        return Point(self.x, self.y+1), Point(self.x, self.y-1), Point(self.x-1, self.y), Point(self.x+1, self.y)

__abs__

求绝对值的方法,重载时定义为把横纵坐标都取绝对。

    def __abs__(self):
        return Point(*map(abs,(self.x, self.y)))

以上三种方法不改变类自身,注意以下写法会使类改变自身

    def __neg__(self):
        self.x = -self.x
        return self
    def __pos__(self):
        self.y = -self.y
        return self
    def __abs__(self):
        self.x, self.y = map(abs,(self.x, self.y))
        return self

__bool__

布尔值方法,重载时定义为点处在坐标系第一象限及其边界上,就返回True;否则返回False。

    def __bool__(self):
        return self.x>=0 and self.y>=0

__call__

这个魔术方法比较特殊,它允许一个类像函数一样被调用;我们借此定义一个点的移动。

    def __call__(self, dx=0, dy=0):
        return Point(self.x + dx, self.y + dy)

测试:

>>> a = Point(-5,5)
>>> b = a(3, 2)
>>> b
Rc(-2, 7)
>>> b = b(3, 2)
>>> b
Rc(1, 9)
>>> a
Rc(-5, 5)

扩展一下__call__方法,让它除了能移动点还能计算点到点的实际距离:

    def __call__(self, dx=0, dy=0, distance=False):
        if distance:
            return ((self.x-dx)**2 + (self.y-dy)**2)**0.5
        return Point(self.x + dx, self.y + dy)

测试:

>>> a = Point(3,4)
>>> a(0,0,True)
5.0
>>> len(a)
5
>>> a(*a(1, 1), True)
1.4142135623730951
>>> a
Rc(3, 4)
>>> a(2, 3, True)
1.4142135623730951
 

注:一旦定义了__call__这个方法,__pos__方法就能改进得更简洁。

class Point:
    def __init__(self, r=0, c=0):
        self.x, self.y = r, c
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __pos__(self):
        return self(0, 1), self(0, -1), self(-1), self(1)
    def __call__(self, dx=0, dy=0):
        return Point(self.x + dx, self.y + dy)

测试:

 >>> a=Point()
>>> +a
(Point(0, 1), Point(0, -1), Point(-1, 0), Point(1, 0))
>>> +Point()   # 直接返回上下左右四个方向
(Point(0, 1), Point(0, -1), Point(-1, 0), Point(1, 0))
>>> b = Point(7, 8)
>>> +b
(Point(7, 9), Point(7, 7), Point(6, 8), Point(8, 8))
 

最后,综合以上所有有用的魔术方法,代码如下:

class Point:
    def __init__(self, x=0, y=0):
        self.x, self.y = x, y
    def __repr__(self):
        return f'Point({self.x}, {self.y})'
    def __str__(self):
        return f'({self.x}, {self.y})'
    def __getitem__(self, index):
        if index in range(-2,2):
            return self.y if index in (1,-1) else self.x
        raise IndexError("Index out of range")
    def __setitem__(self, index, value):
        if index in (0, -2):
            self.x = value
        elif index in (1, -1):
            self.y = value
        else:
            raise IndexError("Index out of range.")
    def __len__(self):
        return 2
    def __abs__(self):
        return Point(*map(abs,(self.x, self.y)))
    def __bool__(self):
        return self.x>=0 and self.y>=0
    def __neg__(self):
        return Point(-self.x, -self.y)
    def __pos__(self):
        return self(0, 1), self(0, -1), self(-1), self(1)
    def __call__(self, dx=0, dy=0):
        return Point(self.x + dx, self.y + dy)

重载运算符

python中,常用的运算符都有对应的魔法方法可以重新定义新的运算操作。

比较运算符

相等 ==

两个点相等,就是它俩的横纵坐标分别相等。

    def __eq__(self, other):
        return self.x == other.x and self.y == other.y

为使得类更强健,可以对参数other作一类型判断:

 def __eq__(self, other):
        assert(isinstance(other, Point))
        return self.x == other.x and self.y == other.y 

或者:

    def __eq__(self, other):
        if isinstance(other, Point):
            return self.x == other.x and self.y == other.y
        else:
            raise TypeError("Operand must be an instance of Point")
 
不等 !=
    def __ne__(self, other):
        return self.x != other.x or self.y != other.y

也可以这样表示:

   def __ne__(self, other):

       return not self.__eq__(er.y 。

因为 not self.x == other.x and self.y == other.y 即 not self.x == other.x or not self.y == other.y 。

经测试,有了__eq__,__ne__可有可无,直接可以用 != 运算。

>>> class Point:
...     def __init__(self, x=0, y=0):
...         self.x, self.y = x, y
...     def __eq__(self, other):
...         return self.x == other.x and self.y == other.y
... 
...     
>>> a = Point(2, 5)
>>> b = Point(2, 5)
>>> c = Point(1, 3)
>>> a == a
True
>>> a == b
True
>>> a == c
False
>>> a != b
False
>>> b != c
True 
>>> class Point:
...     def __init__(self, x=0, y=0):
...         self.x, self.y = x, y
...     def __eq__(self, other):
...         return self.x == other.x and self.y == other.y
...     def __ne__(self, other):
...         return self.x != other.x or self.y != other.y
... 
...     
>>> a = Point(2, 5)
>>> b = Point(2, 3)
>>> a != b
True
 
 

Python 妙用运算符重载——玩出“点”花样来(下)https://developer.aliyun.com/article/1490285

目录
相关文章
|
2月前
|
开发者 Python
Python中的魔法方法与运算符重载
在Python的奇妙世界里,魔法方法(Magic Methods)和运算符重载(Operator Overloading)是两个强大的特性,它们允许开发者以更自然、更直观的方式操作对象。本文将深入探讨这些概念,并通过实例展示如何利用它们来增强代码的可读性和表达力。
|
6月前
|
测试技术 虚拟化 云计算
GitHub高赞!速通Python编程基础手册,被玩出花了!
随着云时代的来临,Python 语言越来越被程序开发人员喜欢和使用,因为其不仅简单易学,而且还有丰富的第三方程序库和相应完善的管理工具。 从命令行脚本程序到 GUI程序,从图形技术到科学计算,从软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有 Python 的身影。 今天给小伙伴们分享的这份手册采用以任务为导向的编写模式,全面地介绍了 Python 编程基础及其相关知识的应用,讲解了如何利用 Python 的知识解决部分实际问题。
GitHub高赞!速通Python编程基础手册,被玩出花了!
|
6月前
|
测试技术 虚拟化 云计算
GitHub高赞!速通Python编程基础手册,被玩出花了!
随着云时代的来临,Python 语言越来越被程序开发人员喜欢和使用,因为其不仅简单易学,而且还有丰富的第三方程序库和相应完善的管理工具。 从命令行脚本程序到 GUI程序,从图形技术到科学计算,从软件开发到自动化测试,从云计算到虚拟化,所有这些领域都有 Python 的身影。 今天给小伙伴们分享的这份手册采用以任务为导向的编写模式,全面地介绍了 Python 编程基础及其相关知识的应用,讲解了如何利用 Python 的知识解决部分实际问题。
|
5月前
|
Python
惊呆了!学会这一招,你的Python上下文管理器也能玩出花样来文管理器也能玩出花样来
【7月更文挑战第6天】Python的上下文管理器是资源优雅管理的关键,与with语句结合,确保资源获取和释放。通过实现`__enter__`和`__exit__`,不仅能做资源分配和释放,还能扩展实现如计时、自动重试、事务处理等功能。例如,TimerContextManager类记录代码执行时间,展示了上下文管理器的灵活性。学习和利用这一机制能提升代码质量,增强功能,是Python编程的必备技巧。
37 0
|
7月前
|
索引 Python
Python 妙用运算符重载——玩出“点”花样来(下)
Python 妙用运算符重载——玩出“点”花样来(下)
86 0
C4.
|
7月前
|
Python
Python运算符重载
Python运算符重载
C4.
51 1
|
7月前
|
编译器 Python
Python 教程之运算符(6)—— 运算符重载
Python 教程之运算符(6)—— 运算符重载
57 0
|
7月前
|
人工智能 测试技术 Python
软件测试/人工智能|一篇文章教你把Python关系运算符玩出花样
软件测试/人工智能|一篇文章教你把Python关系运算符玩出花样
|
编译器 Python
Python 教程之运算符(6)—— 运算符重载
Python 教程之运算符(6)—— 运算符重载
110 0
|
索引 Python 对象存储
Python全栈工程师(异常(高级)、运算符重载)
ParisGabriel              每天坚持手写  一天一篇  决定坚持几年 为了梦想为了信仰     开局一张图                       Python人工智能从入门到精通   对象的属性管理函数:   getattr(obj, name[,defa...
1459 0