206.反转链表
题意:反转一个单链表。
示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL
思路
如果再定义一个新的链表,实现链表元素的反转,其实这是对内存空间的浪费。
其实只需要改变链表的next指针的指向,直接将链表反转 ,而不用重新定义一个新的链表,如图所示:
之前链表的头节点是元素1, 反转之后头结点就是元素5 ,这里并没有添加或者删除节点,仅仅是改变next指针的方向。
那么接下来看一看是如何反转的呢?
我们拿有示例中的链表来举例,如动画所示:(纠正:动画应该是先移动pre,在移动cur)
首先定义一个cur指针,指向头结点,再定义一个pre指针,初始化为null。
然后就要开始反转了,首先要把 cur->next 节点用tmp指针保存一下,也就是保存一下这个节点。
为什么要保存一下这个节点呢,因为接下来要改变 cur->next 的指向了,将cur->next 指向pre ,此时已经反转了第一个节点了。
接下来,就是循环走如下代码逻辑了,继续移动pre和cur指针。
最后,cur 指针已经指向了null,循环结束,链表也反转完毕了。 此时我们return pre指针就可以了,pre指针就指向了新的头结点。
双指针法
// 双指针 class Solution { public ListNode reverseList(ListNode head) { ListNode prev = null; ListNode cur = head; ListNode temp = null; while (cur != null) { temp = cur.next;// 保存下一个节点 cur.next = prev; prev = cur; cur = temp; } return prev; } }
- 时间复杂度: O(n)
- 空间复杂度: O(1)
递归法
递归法相对抽象一些,但是其实和双指针法是一样的逻辑,同样是当cur为空的时候循环结束,不断将cur指向pre的过程。
关键是初始化的地方,可能有的同学会不理解, 可以看到双指针法中初始化 cur = head,pre = NULL,在递归法中可以从如下代码看出初始化的逻辑也是一样的,只不过写法变了。
具体可以看代码(已经详细注释),双指针法写出来之后,理解如下递归写法就不难了,代码逻辑都是一样的。
// 递归 class Solution { public ListNode reverseList(ListNode head) { return reverse(null, head); } private ListNode reverse(ListNode prev, ListNode cur) { if (cur == null) { return prev; } ListNode temp = null; temp = cur.next;// 先保存下一个节点 cur.next = prev;// 反转 // 更新prev、cur位置 // prev = cur; // cur = temp; return reverse(cur, temp); } }
- 时间复杂度: O(n), 要递归处理链表的每个节点
- 空间复杂度: O(n), 递归调用了 n 层栈空间