Hadoop存储类型多样化

简介: 【4月更文挑战第15天】Hadoop提供多元化的存储选项,包括HDFS(适合大规模批量处理,如日志分析)和HBase(适用于实时查询的分布式列存储数据库)。Hadoop还支持TextFile(未压缩的行存储)和SequenceFile(压缩的二进制格式)等文件格式。压缩方式有记录压缩和块压缩,后者提升并行处理效率。根据场景需求选择合适存储类型和格式,确保高效、可靠的数据管理。

image.png
Hadoop存储类型确实具有多样化的特点,主要包括HDFS(Hadoop分布式文件系统)和HBase等。以下是关于这两种存储类型的详细介绍:

  1. HDFS(Hadoop Distributed File System):
    • HDFS是Hadoop的默认存储类型,它特别适用于存储大规模数据文件。通过将大文件切分成多个块,并在多个节点上进行分布式存储,HDFS提高了数据的可靠性和容错性。
    • HDFS适合用于批量处理大规模数据的场景,例如日志分析、数据挖掘等。其高容错性、高吞吐量的特点使其成为处理大规模数据集的理想选择。
  2. HBase:
    • HBase是Hadoop生态系统中的一种分布式列存储数据库,它非常适合存储大量结构化数据。
    • HBase提供了快速的随机读写能力,并支持数据的实时访问,因此适用于需要实时查询和分析大规模数据的场景,例如实时监控系统、在线广告投放等。

此外,Hadoop还支持多种文件存储格式,如TextFile和SequenceFile。TextFile是默认格式,以行存储数据,但数据不做压缩,可能导致较大的磁盘开销和数据解析开销。而SequenceFile是Hadoop API提供的一种二进制文件支持,支持数据的分割和压缩,从而提高了处理效率和存储效率。

在压缩形式上,Hadoop提供了记录压缩和块压缩两种方式。记录压缩是对每条记录进行压缩,而块压缩则是将一个文件分成多个块,分别进行压缩。块压缩可以提高并行处理的效率,因为每个块的处理可以并行执行。

总的来说,Hadoop的存储类型多样化,可以根据不同的应用场景和需求选择适合的存储类型和文件存储格式,以实现高效、可靠的数据存储和处理。

相关实践学习
云数据库HBase版使用教程
  相关的阿里云产品:云数据库 HBase 版 面向大数据领域的一站式NoSQL服务,100%兼容开源HBase并深度扩展,支持海量数据下的实时存储、高并发吞吐、轻SQL分析、全文检索、时序时空查询等能力,是风控、推荐、广告、物联网、车联网、Feeds流、数据大屏等场景首选数据库,是为淘宝、支付宝、菜鸟等众多阿里核心业务提供关键支撑的数据库。 了解产品详情: https://cn.aliyun.com/product/hbase   ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
6天前
|
存储 固态存储 文件存储
[hadoop3.x]HDFS存储类型和存储策略(五)概述
[hadoop3.x]HDFS存储类型和存储策略(五)概述
72 1
|
6天前
|
存储 分布式计算 Hadoop
大数据处理架构Hadoop
【4月更文挑战第10天】Hadoop是开源的分布式计算框架,核心包括MapReduce和HDFS,用于海量数据的存储和计算。具备高可靠性、高扩展性、高效率和低成本优势,但存在低延迟访问、小文件存储和多用户写入等问题。运行模式有单机、伪分布式和分布式。NameNode管理文件系统,DataNode存储数据并处理请求。Hadoop为大数据处理提供高效可靠的解决方案。
99 2
|
6天前
|
分布式计算 Hadoop 大数据
大数据技术与Python:结合Spark和Hadoop进行分布式计算
【4月更文挑战第12天】本文介绍了大数据技术及其4V特性,阐述了Hadoop和Spark在大数据处理中的作用。Hadoop提供分布式文件系统和MapReduce,Spark则为内存计算提供快速处理能力。通过Python结合Spark和Hadoop,可在分布式环境中进行数据处理和分析。文章详细讲解了如何配置Python环境、安装Spark和Hadoop,以及使用Python编写和提交代码到集群进行计算。掌握这些技能有助于应对大数据挑战。
|
1天前
|
存储 分布式计算 Hadoop
大数据存储技术(1)—— Hadoop简介及安装配置
大数据存储技术(1)—— Hadoop简介及安装配置
11 0
|
6天前
|
分布式计算 数据可视化 Hadoop
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
大数据实战——基于Hadoop的Mapreduce编程实践案例的设计与实现
49 0
|
6天前
|
分布式计算 资源调度 Hadoop
java与大数据:Hadoop与MapReduce
java与大数据:Hadoop与MapReduce
28 0
|
6天前
|
存储 分布式计算 Hadoop
【专栏】Hadoop,开源大数据处理框架:驭服数据洪流的利器
【4月更文挑战第28天】Hadoop,开源大数据处理框架,由Hadoop Common、HDFS、YARN和MapReduce组成,提供大规模数据存储和并行处理。其优势在于可扩展性、容错性、高性能、灵活性及社区支持。然而,数据安全、处理速度、系统复杂性和技能短缺是挑战。通过加强安全措施、结合Spark、自动化工具和培训,Hadoop在应对大数据问题中保持关键地位。
|
6天前
|
分布式计算 Hadoop 大数据
[大数据] mac 史上最简单 hadoop 安装过程
[大数据] mac 史上最简单 hadoop 安装过程
|
6天前
|
SQL 分布式计算 Hadoop
利用Hive与Hadoop构建大数据仓库:从零到一
【4月更文挑战第7天】本文介绍了如何使用Apache Hive与Hadoop构建大数据仓库。Hadoop的HDFS和YARN提供分布式存储和资源管理,而Hive作为基于Hadoop的数据仓库系统,通过HiveQL简化大数据查询。构建过程包括设置Hadoop集群、安装配置Hive、数据导入与管理、查询分析以及ETL与调度。大数据仓库的应用场景包括海量数据存储、离线分析、数据服务化和数据湖构建,为企业决策和创新提供支持。
96 1
|
6天前
|
分布式计算 资源调度 Hadoop
Apache Hadoop入门指南:搭建分布式大数据处理平台
【4月更文挑战第6天】本文介绍了Apache Hadoop在大数据处理中的关键作用,并引导初学者了解Hadoop的基本概念、核心组件(HDFS、YARN、MapReduce)及如何搭建分布式环境。通过配置Hadoop、格式化HDFS、启动服务和验证环境,学习者可掌握基本操作。此外,文章还提及了开发MapReduce程序、学习Hadoop生态系统和性能调优的重要性,旨在为读者提供Hadoop入门指导,助其踏入大数据处理的旅程。
248 0