【ChatGPT】ChatGPT是如何训练得到的?

简介: 【ChatGPT】ChatGPT是如何训练得到的?

前言


ChatGPT是一种基于语言模型的聊天机器人,它使用了GPT(Generative Pre-trained Transformer)的深度学习架构来生成与用户的对话。GPT是一种使用Transformer编码器和解码器的预训练模型,它已被广泛用于生成自然语言文本的各种应用程序,例如文本生成,机器翻译和语言理解。


在本文中,我们将探讨如何使用Python和PyTorch来训练ChatGPT,以及如何使用已经训练的模型来生成对话。


1.准备数据


在训练ChatGPT之前,我们需要准备一个大型的对话数据集。这个数据集应该包含足够的对话,覆盖各种主题和领域,以及各种不同的对话风格。这个数据集可以是从多个来源收集的,例如电影脚本,电视节目,社交媒体上的聊天记录等。


在本文中,我们将使用Cornell Movie Dialogs Corpus,一个包含电影对话的大型数据集。这个数据集包含超过22,000个对话,涵盖了多个主题和风格。


我们可以使用以下代码下载和解压缩Cornell Movie Dialogs Corpus,这个数据集也可以从[这里](https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html)手动下载。

import os
import urllib.request
import zipfile
 
DATA_URL = 'http://www.cs.cornell.edu/~cristian/data/cornell_movie_dialogs_corpus.zip'
DATA_DIR = './cornell_movie_dialogs_corpus'
DATA_FILE = os.path.join(DATA_DIR, 'cornell_movie_dialogs_corpus.zip')
 
if not os.path.exists(DATA_DIR):
    os.makedirs(DATA_DIR)
 
if not os.path.exists(DATA_FILE):
    print('Downloading data...')
    urllib.request.urlretrieve(DATA_URL, DATA_FILE)
 
print('Extracting data...')
with zipfile.ZipFile(DATA_FILE, 'r') as zip_ref:
    zip_ref.extractall(DATA_DIR)

2.数据预处理


在准备好数据集之后,我们需要对数据进行预处理,以便将其转换为模型可以处理的格式。在本教程中,我们使用了一个简单的预处理步骤,该步骤包括下列几步:


  • 将数据拆分成句子pairs(上下文,回答)
  • 去除标点符号和特殊字符
  • 将所有的单词转换成小写
  • 将单词映射到一个整数ID
  • 将句子填充到相同的长度


下面是用于预处理数据的代码:
import re
import random
import numpy as np
import torch
 
def load_conversations():
    id2line = {}
    with open(os.path.join(DATA_DIR, 'movie_lines.txt'), errors='ignore') as f:
        for line in f:
            parts = line.strip().split(' +++$+++ ')
            id2line[parts[0]] = parts[4]
 
    inputs = []
    outputs = []
    with open(os.path.join(DATA_DIR, 'movie_conversations.txt'), 'r') as f:
        for line in f:
            parts = line.strip().split(' +++$+++ ')
            conversation = [id2line[id] for id in parts[3][1:-1].split(',')]
            for i in range(len(conversation) - 1):
                inputs.append(conversation[i])
                outputs.append(conversation[i+1])
    return inputs, outputs
 
def preprocess_sentence(sentence):
    sentence = re.sub(r"([?.!,])", r" \1 ", sentence)
    sentence = re.sub(r"[^a-zA-Z?.!,]+", r" ", sentence)
    sentence = sentence.lower()
    return sentence
 
def tokenize_sentence(sentence, word2index):
    tokenized = []
    for word in sentence.split(' '):
        if word not in word2index:
            continue
        tokenized.append(word2index[word])
    return tokenized
 
def preprocess_data(inputs, outputs, max_length=20):
    pairs = []
    for i in range(len(inputs)):
        input_sentence = preprocess_sentence(inputs[i])
        output_sentence = preprocess_sentence(outputs[i])
        pairs.append((input_sentence, output_sentence))
 
    word_counts = {}
    for pair in pairs:
        for sentence in pair:
            for word in sentence.split(' '):
                if word not in word_counts:
                    word_counts[word] = 0
                word_counts[word] += 1
 
    word2index = {}
    index2word = {0: '<pad>', 1: '<start>', 2: '<end>', 3: '<unk>'}
    index = 4
    for word, count in word_counts.items():
        if count >= 10:
            word2index[word] = index
            index2word[index] = word
            index += 1
 
    inputs_tokenized = []
    outputs_tokenized = []
    for pair in pairs:
        input_sentence, output_sentence = pair
        input_tokenized = [1] + tokenize_sentence(input_sentence, word2index) + [2]
        output_tokenized = [1] + tokenize_sentence(output_sentence, word2index) + [2]
        if len(input_tokenized) <= max_length and len(output_tokenized) <= max_length:
            inputs_tokenized.append(input_tokenized)
            outputs_tokenized.append(output_tokenized)
 
    inputs_padded = torch.nn.utils.rnn.pad_sequence(inputs_tokenized, batch_first=True, padding_value=0)
    outputs_padded = torch.nn.utils.rnn.pad_sequence(outputs_tokenized, batch_first=True, padding_value=0)
    return inputs_padded, outputs_padded, word2index, index2word


3.训练模型


在完成数据预处理之后,我们可以开始训练ChatGPT模型。对于本文中的示例,我们将使用PyTorch深度学习框架来实现ChatGPT模型。


首先,我们需要定义一个Encoder-Decoder模型结构。这个结构包括一个GPT解码器,它将输入的上下文句子转换为一个回答句子。GPT解码器由多个Transformer解码器堆叠而成,每个解码器都包括多头注意力和前馈神经网络层。

 
import torch.nn as nn
from transformers import GPT2LMHeadModel
 
class EncoderDecoder(nn.Module):
    def __init__(self, num_tokens, embedding_dim=256, hidden_dim=512, num_layers=2, max_length=20):
        super().__init__()
        
        self.embedding = nn.Embedding(num_tokens, embedding_dim)
        self.decoder = nn.ModuleList([GPT2LMHeadModel.from_pretrained('gpt2') for _ in range(num_layers)])
        self.max_length = max_length
 
    def forward(self, inputs, targets=None):
        inputs_embedded = self.embedding(inputs)
        outputs = inputs_embedded
        for decoder in self.decoder:
            outputs = decoder(inputs_embedded=outputs)[0]
        return outputs
 
    def generate(self, inputs, temperature=1.0):
        inputs_embedded = self.embedding(inputs)
        input_length = inputs.shape[1]
        output = inputs_embedded
        for decoder in self.decoder:
            output = decoder(inputs_embedded=output)[0][:, input_length-1, :]
            output_logits = output / temperature
            output_probs = nn.functional.softmax(output_logits, dim=-1)
            output_token = torch.multinomial(output_probs, num_samples=1)
            output_token_embedded = self.embedding(output_token)
            output = torch.cat([output, output_token_embedded], dim=1)
        return output[:, input_length:, :]

然后,我们需要定义一个训练函数,该函数将使用梯度下降方法优化模型参数,并将每个epoch的损失和正确率记录到一个日志文件中。

 
def train(model, inputs, targets, optimizer, criterion):
    model.train()
    optimizer.zero_grad()
    outputs = model(inputs, targets[:, :-1])
    loss = criterion(outputs.reshape(-1, outputs.shape[-1]), targets[:, 1:].reshape(-1))
    loss.backward()
    optimizer.step()
    return loss.item()
 
def evaluate(model, inputs, targets, criterion):
    model.eval()
    with torch.no_grad():
        outputs = model(inputs, targets[:, :-1])
        loss = criterion(outputs.reshape(-1, outputs.shape[-1]), targets[:, 1:].reshape(-1))
    return loss.item()
 
def train_model(model, inputs, targets, word2index, index2word, num_epochs=10, batch_size=64, lr=1e-3):
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu
相关文章
|
数据采集 算法
chatGPT的训练
chatGPT是一种基于GPT模型的对话生成模型,它能够根据输入的对话历史和上下文生成自然流畅的回复。chatGPT的训练主要分为两个阶段:预训练和微调。 1. 预训练 chatGPT的预训练阶段与GPT模型的预训练类似,主要是在大规模无监督数据上进行语言模型的训练。在预训练阶段,模型会通过多层的Transformer结构对输入的文本进行编码,学习到文本中的语言知识和上下文关联性。预训练的目的是让模型具有强大的语言理解和生成能力,从而能够在特定任务上进行微调。 具体来说,chatGPT的预训练过程包括以下几个步骤: (1)数据收集和清洗。chatGPT需要大规模的对话数据来进行预训练,
205 1
|
机器学习/深度学习 存储 人工智能
DeepSpeed ZeRO++:降低4倍网络通信,显著提高大模型及类ChatGPT模型训练效率
DeepSpeed ZeRO++:降低4倍网络通信,显著提高大模型及类ChatGPT模型训练效率
346 0
DeepSpeed ZeRO++:降低4倍网络通信,显著提高大模型及类ChatGPT模型训练效率
|
1月前
|
机器学习/深度学习 人工智能 并行计算
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat 是一款革命性的平台,专为简化和加速类ChatGPT模型的训练而设计。通过一键式脚本,用户可以轻松完成从预训练模型到生成自定义ChatGPT模型的全过程。该系统复刻了InstructGPT的RLHF训练方法,并集成了一系列优化技术,如DeepSpeed Hybrid Engine,大幅提升了训练效率和经济性。使用DeepSpeed Chat,即使是拥有数千亿参数的大模型,也能在短时间内完成训练,且成本显著降低。无论是单GPU还是多GPU集群环境,DeepSpeed Chat都能提供卓越的性能和易用性,让RLHF训练变得更加普及。
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
|
3月前
|
人工智能 开发者 芯片
【51单片机】单片机开发者的福音: 让AI看电路图帮你编写程序(使用ChatGPT 中训练好的单片机工程师模型)
使用AI大语言模型编写 单片机程序. 使用的是 OpenAI公司发布的 ChatGPT .在ChatGPT上有别人训练好的 单片机工程师 with Keil uVision 5 - C Code Explainer模型, 可以上传电路图改模型可以通过这个用户所给的电路图进行编程.
244 0
【51单片机】单片机开发者的福音: 让AI看电路图帮你编写程序(使用ChatGPT 中训练好的单片机工程师模型)
|
4月前
|
数据采集 编解码 人工智能
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍
【7月更文挑战第19天】DeepMind的JEST算法革新AI训练,提升效率13倍,节能10倍。通过联合数据批次选择,预训练指导及多分辨率训练,优化资源利用,降低能耗。实验显示性能提升,达到SOTA水平,但实施需大量资源,依赖优质参考模型。[论文链接](https://arxiv.org/pdf/2406.17711)
67 10
|
4月前
|
人工智能 边缘计算 算法
破解ChatGPT惊人耗电!DeepMind新算法训练提效13倍,能耗暴降10倍
【7月更文挑战第20天】DeepMind unveils Switch Transformer, revolutionizing AI energy consumption. This novel algorithm boosts training efficiency by 13x and slashes energy use by 10x compared to ChatGPT, marking a significant leap towards eco-friendly AI.
49 2
|
3月前
|
机器学习/深度学习 算法
ChatGPT 等相关大模型问题之收集数据并构建训练样本如何解决
ChatGPT 等相关大模型问题之收集数据并构建训练样本如何解决
|
5月前
|
机器学习/深度学习 人工智能 算法
【人工智能】第二部分:ChatGPT的架构设计和训练过程
【人工智能】第二部分:ChatGPT的架构设计和训练过程
152 4
|
机器学习/深度学习 人工智能 算法
ChatGPT是如何训练得到的?通俗讲解
ChatGPT是如何训练得到的?通俗讲解
|
机器学习/深度学习 人工智能 搜索推荐
3090单卡5小时,每个人都能训练专属ChatGPT,港科大开源LMFlow
3090单卡5小时,每个人都能训练专属ChatGPT,港科大开源LMFlow
408 0