ARIMA模型、随机游走模型RW模拟和预测时间序列趋势可视化

简介: ARIMA模型、随机游走模型RW模拟和预测时间序列趋势可视化

当一个序列遵循随机游走模型时,就说它是非平稳的。我们可以通过对时间序列进行一阶差分来对其进行平稳化,这将产生一个平稳序列,即零均值白噪声序列。例如,股票的股价遵循随机游走模型,收益序列(价格序列的差分)将遵循白噪声模型。

让我们更详细地了解这种现象。

由于随机游走序列的差分是白噪声序列,我们可以说随机游走序列是零均值白噪声序列的累积和(即积分)。有了这些信息,我们可以以 ARIMA 模型的形式定义 Random Walk 序列,如下所示:

ARIMA(0,1,0)
其中
- 自回归部分,p = 0
- 积分部分,d = 1
- 移动平均部分,q = 0

模拟随机游走序列

我们现在可以通过为arima.sim 提供适当的参数来模拟 R 中的随机游走序列, 如下所示:

R <- arima.sim

我们可以使用该plot.ts() 函数绘制新生成的序列 。

> plot.ts

正如我们可以清楚地观察到的,这是一个非平稳序列,它的均值和标准偏差随时间变化不是恒定的。

一阶差分序列

为了使序列平稳,我们取序列的一阶差分。

if <- diff

绘制时,您会注意到差分序列类似于白噪声。

Rf 序列的统计数据计算如下:

> mean(Rf)
> sd(Wf)

带偏移的随机游走序列

我们模拟的上述随机游走序列在均值附近上下徘徊。但是,我们可以让随机游走系列跟随上升或下降趋势,称为偏移。为此,我们为函数提供了一个额外的参数均值/截距  。这个截距是模型的斜率。我们还可以更改模拟序列的标准差。在下面的代码中,我们提供了 1 的平均值和 5 的标准差。

> Rt <- arima.sim
> plot.ts

估计随机游走模型

为了拟合具有时间序列偏移的随机游走模型,我们将遵循以下步骤

  • 取数据的一阶差分。
  • arima使用阶数为 的函数 将白噪声模型拟合到差分数据 c(0,0,0)
  • 绘制原始时间序列图。
  • abline通过提供通过将白噪声模型拟合为斜率得到的截距,使用该函数添加估计趋势 。

1. 一阶差分

为了使这个数列平稳,我们将取数列的差值。

> plot.ts

2. 将白噪声模型拟合到差分数据

我们现在可以使用 arima将白噪声模型拟合到差分数据。

> whodl <- arima

我们可以看到拟合的白噪声模型的截距为 0.67。

3. 绘制原始随机游走数据

这可以使用以下命令完成:

> plot.ts

4.添加估计趋势

现在在同一个图上,我们要添加估计的趋势。在本课开始时,我们解释了随机游走序列如何是零均值白噪声序列的累积和(即积分)。因此,截距实际上是我们随机游走序列的斜率。

我们可以使用函数绘制趋势线 ,其中 a 是截距,b 是线的斜率。在我们的例子中,我们将指定白噪声模型的“a=0”和“b=intercept”。

> abline

估计的趋势线将添加到我们的图中。

相关文章
|
存储 SQL 人工智能
CCCF专栏 | 加密数据库技术:前沿与展望
本文将从数据安全防护的重大战略需求出发,聚焦数据安全搜索、加密数据库技术等前沿领域,深入探讨加密数据库的发展现状,揭示其设计过程中存在的安全性和性能方面的挑战,并提出未来关于加密数据库建设的一些愿景。
CCCF专栏 | 加密数据库技术:前沿与展望
|
数据采集 机器学习/深度学习 数据挖掘
【数学建模】 灰色预测模型
【数学建模】 灰色预测模型
887 0
|
机器学习/深度学习 程序员 数据处理
时间序列分析技巧(一):根据ACF、PACF进行AR、MA、ARMA模型选择
时间序列分析技巧(一):根据ACF、PACF进行AR、MA、ARMA模型选择
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
739 4
|
机器学习/深度学习 算法 数据处理
一文讲懂“预测滞后性”:详细解析
本文介绍了预测分析中常见的“预测滞后性”现象及其原因,包括数据收集延迟、模型训练耗时、预测算法延迟及模型特性等。文章还提供了应对策略,如实时数据处理、选择合适模型、在线学习及多方法结合,并附有使用简单移动平均法进行时间序列预测的Python代码示例,帮助读者理解和优化预测过程。
|
机器学习/深度学习
【元学习meta-learning】通俗易懂讲解元学习以及与监督学习的区别
本文通过通俗易懂的方式解释了元学习(Meta-learning)的概念及其与传统监督学习的区别,并通过实例说明了元学习是如何让模型具备快速学习新任务的能力。
2561 1
|
数据挖掘 vr&ar Python
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
Python金融时间序列模型ARIMA 和GARCH 在股票市场预测应用
401 10
|
JavaScript 前端开发 安全
【Web 前端】使用 TypeScript 有什么好处?
【5月更文挑战第1天】【Web 前端】使用 TypeScript 有什么好处?
|
机器学习/深度学习 Serverless 图计算
【视频】时间序列分析:ARIMA-ARCH / GARCH模型分析股票价格-2
【视频】时间序列分析:ARIMA-ARCH / GARCH模型分析股票价格
|
机器学习/深度学习 存储 数据建模
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格
时间序列分析模型:ARIMA-ARCH / GARCH模型分析股票价格