R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集

简介: R语言k-means聚类、层次聚类、主成分(PCA)降维及可视化分析鸢尾花iris数据集

本练习问题包括:使用R中的鸢尾花数据集

(a)部分:k-means聚类

使用k-means聚类法将数据集聚成2组。

画一个图来显示聚类的情况

使用k-means聚类法将数据集聚成3组。

画一个图来显示聚类的情况

(b)部分:层次聚类

使用全连接法对观察值进行聚类。

使用平均和单连接对观测值进行聚类。

绘制上述聚类方法的树状图。

使用R中的鸢尾花数据集k-means聚类

讨论和/或考虑对数据进行标准化。







data.frame(
  "平均"=apply(iris\[,1:4\], 2, mean
  "标准差"=apply(iris\[,1:4\], 2, sd)


在这种情况下,我们将标准化数据,因为花瓣的宽度比其他所有的测量值小得多。

向下滑动查看结果



使用k-means聚类法将数据集聚成2组







使用足够大的nstart,更容易得到对应最小RSS值的模型。

kmean(iris, nstart = 100)


向下滑动查看结果


画一个图来显示聚类的情况







# 绘制数据
plot(iris, y = Sepal.Length, x = Sepal.Width)


为了更好地考虑花瓣的长度和宽度,使用PCA首先降低维度会更合适。

#  创建模型
PCA.mod<- PCA(x = iris)
#把预测的组放在最后
PCA$Pred <-Pred
#绘制图表
plot(PC, y = PC1, x = PC2, col = Pred)

为了更好地解释PCA图,考虑到主成分的方差。

## 看一下主要成分所解释的方差
for (i in 1:nrow) {
  pca\[\["PC"\]\]\[i\] <- paste("PC", i)
}

plot(data = pca,x = 主成分, y = 方差比例, group = 1)

数据中80%的方差是由前两个主成分解释的,所以这是一个相当好的数据可视化。


向下滑动查看结果



使用k-means聚类法将数据集聚成3组







在之前的主成分图中,聚类看起来非常明显,因为实际上我们知道应该有三个组,我们可以执行三个聚类的模型。

kmean(input, centers = 3, nstart = 100)
# 制作数据
groupPred %>% print()



向下滑动查看结果


画一个图来显示聚类的情况







#  绘制数据
plot(萼片长度,萼片宽度, col =pred)

向下滑动查看结果


PCA图

为了更好地考虑花瓣的长度和宽度,使用PCA首先减少维度是比较合适的。







#创建模型
prcomp(x = iris)
#把预测的组放在最后
PCADF$KMeans预测<- Pred
#绘制图表
plot(PCA, y = PC1, x = PC2,col = "预测\\n聚类", caption = "鸢尾花数据的前两个主成分,椭圆代表90%的正常置信度,使用K-means算法对2个类进行预测") +

向下滑动查看结果


PCA双曲线图

萼片长度~萼片宽度图的分离度很合理,为了选择在X、Y上使用哪些变量,我们可以使用双曲线图。







biplot(PCA)

这个双曲线图显示,花瓣长度和萼片宽度可以解释数据中的大部分差异,更合适的图是:

plot(iris, col = KM预测)

评估所有可能的组合。

iris %>%
  pivot_longer()  %>% 
plot(col = KM预测, facet\_grid(name ~ ., scales = 'free\_y', space = 'free_y', ) +

向下滑动查看结果


层次聚类

使用全连接法对观测值进行聚类。







可以使用全连接法对观测值进行聚类(注意对数据进行标准化)。

hclust(dst, method = 'complete')


向下滑动查看结果



使用平均和单连接对观察结果进行聚类。







hclust(dst, method = 'average')
hclust(dst, method = 'single')


向下滑动查看结果


绘制预测图

现在模型已经建立,通过指定所需的组数,对树状图切断进行划分。







#  数据
iris$KMeans预测<- groupPred
# 绘制数据
plot(iris,col = KMeans预测))


向下滑动查看结果


绘制上述聚类方法的树状图

对树状图着色。







type<- c("平均", "全", "单")
for (hc in models) plot(hc, cex = 0.3)




向下滑动查看结果



相关文章
|
6月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
6月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
9月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
9月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
6月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
6月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
110 3
|
9月前
|
数据采集 数据可视化
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
利用R语言进行因子分析实战(数据+代码+可视化+详细分析)
|
9月前
|
Web App开发 数据可视化 数据挖掘
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
利用R语言进行聚类分析实战(数据+代码+可视化+详细分析)
|
9月前
|
数据可视化
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码2
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码
|
9月前
|
数据可视化 数据挖掘
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码1
R语言广义线性混合模型GLMMs在生态学中应用可视化2实例合集|附数据代码