R语言混合图形模型MGM的网络可预测性分析

简介: R语言混合图形模型MGM的网络可预测性分析

网络模型已经成为抽象复杂系统,是深入了解许多科学领域中观测变量之间的关系模式的流行方法。这些应用程序大多数集中于分析网络的结构。但是,如果不是直接观察网络,而是根据数据进行估算(如:吸烟与癌症之间存在关联),则除了网络结构外,我们还可以分析网络中节点的可预测性。也就是说:网络中的所有其余节点如何预测网络中的给定节点?

可预测性有趣,有几个原因:

  1. 它给我们提供了一个关于边的实用性的想法:如果节点A连接到许多其他节点,但是这些仅说明(假设)其方差的1%,那么边的连接会是怎样的?
  2. 它告诉我们网络的不同部分在多大程度上是网络中的其他因素决定的

在此博文中,我们使用R-估计网络模型并计算地震灾民数据集上的创伤后应激障碍(PTSD)症状。我们对网络模型和可预测性进行可视化,并讨论如何将网络模型和节点的可预测性相结合来设计症状网络的有效干预措施。


载入资料

我们加载提供的数据:




data <- as.matrix(data)
p <- ncol(data)
dim(data)## [1] 312  17

数据集包含对344人的17种PTSD症状的完整反应。症状强度的答案类别范围从1“没有”到5“非常强”。


估计网络模型

我们估计了混合图形模型,其中我们将所有变量都视为连续高斯变量。因此,我们将所有变量的类型设置为,type = 'g'并将每个变量的类别数设置为1:





fit_obj <- (data = data,
type = rep('g', p),
level = rep(1, p),
lambdaSel = 'CV',
ruleReg = 'OR',
pbar = FALSE)

计算节点的可预测性

估计网络模型后,我们准备计算每个节点的可预测性。由于可以通过依次获取每个节点并对其上的所有其他节点进行回归来估计该图,因此可以轻松地计算节点的可预测性)。作为可预测性的度量,我们选择解释的方差的比例:0表示当前节点根本没有被节点中的其他节点解释,1表示完美的预测。我们在估算之前将所有变量中心化,以消除截距的影响。

有关如何计算预测和选择可预测性度量的详细说明,请查看本文。如果网络中还有其他变量类型(例如分类),我们可以为这些变量选择适当的度量。

pred_obj <- predict(object = fit_obj,
data = data


pred_obj$error
##     Variable    R2
## 1  intrusion 0.639
## 2     dreams 0.661
## 3      flash 0.601
## 4      upset 0.636
## 5    physior 0.627
## 6    avoidth 0.686
## 7   avoidact 0.681
## 8    amnesia 0.410
## 9    lossint 0.520
## 10   distant 0.498
## 11      numb 0.451
## 12    future 0.540
## 13     sleep 0.565
## 14     anger 0.562
## 15    concen 0.638
## 16     hyper 0.676
## 17   startle 0.626

我们计算了网络中每个节点的解释方差(R2)的百分比。接下来,我们将估计的网络可视化,并讨论与解释方差有关的结构。


可视化网络和可预测性

我们根据估计的加权邻接矩阵和节点的可预测性度量作为参数,进行网络可视化:





graph(fit_obj$pairwise$wadj, # 加权邻接矩阵作为输入
layout = 'spring',
pie = pred_obj$error[,2], # 误差作为饼图的输入

相关文章
|
5天前
|
存储 网络协议 Linux
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(下)
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(下)
|
5天前
|
存储 网络协议 安全
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(上)
【Linux 网络】网络基础(一)(局域网、广域网、网络协议、TCP/IP结构模型、网络传输、封装和分用)-- 详解(上)
|
6天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络模型的鱼眼镜头中人员检测算法matlab仿真
该内容是一个关于基于YOLOv2的鱼眼镜头人员检测算法的介绍。展示了算法运行的三张效果图,使用的是matlab2022a软件。YOLOv2模型结合鱼眼镜头畸变校正技术,对鱼眼图像中的人员进行准确检测。算法流程包括图像预处理、网络前向传播、边界框预测与分类及后处理。核心程序段加载预训练的YOLOv2检测器,遍历并处理图像,检测到的目标用矩形标注显示。
|
6天前
|
移动开发 JavaScript 前端开发
APP的HTML5页面经过运营商网络被植入手机管家问题及分析,解决方案见新文章
APP的HTML5页面经过运营商网络被植入手机管家问题及分析,解决方案见新文章
11 0
|
8天前
|
机器学习/深度学习 人工智能 算法
食物识别系统Python+深度学习人工智能+TensorFlow+卷积神经网络算法模型
食物识别系统采用TensorFlow的ResNet50模型,训练了包含11类食物的数据集,生成高精度H5模型。系统整合Django框架,提供网页平台,用户可上传图片进行食物识别。效果图片展示成功识别各类食物。[查看演示视频、代码及安装指南](https://www.yuque.com/ziwu/yygu3z/yhd6a7vai4o9iuys?singleDoc#)。项目利用深度学习的卷积神经网络(CNN),其局部感受野和权重共享机制适于图像识别,广泛应用于医疗图像分析等领域。示例代码展示了一个使用TensorFlow训练的简单CNN模型,用于MNIST手写数字识别。
27 3
|
7天前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
5天前
|
JSON 安全 网络协议
【Linux 网络】网络基础(二)(应用层协议:HTTP、HTTPS)-- 详解
【Linux 网络】网络基础(二)(应用层协议:HTTP、HTTPS)-- 详解
|
5天前
|
存储 网络协议 Unix
【Linux 网络】网络编程套接字 -- 详解
【Linux 网络】网络编程套接字 -- 详解
|
11天前
|
运维 网络协议 Linux
Docker网络_docker 网络,来看看这份超全面的《Linux运维面试题及解析》
Docker网络_docker 网络,来看看这份超全面的《Linux运维面试题及解析》

热门文章

最新文章