R语言逻辑回归分析连续变量和分类变量之间的“相关性“

简介: R语言逻辑回归分析连续变量和分类变量之间的“相关性“

比如说分类变量为是否幸存、是因变量,连续变量为年龄、是自变量,这两者可以做相关分析吗?两者又是否可以做回归分析?

我们考虑泰坦尼克号数据集,



titanic = titanic[!is.na(titanic$Age),]
attach(titanic)

考虑两个变量,年龄x(连续变量)和幸存者指标y(分类变量)






X =  Age
Y =  Survived

年龄可能是逻辑回归中的有效解释变量,




summary(glm(Survived~Age,data=titanic,family=binomial))


Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.05672 0.17358 -0.327 0.7438
Age -0.01096 0.00533 -2.057 0.0397 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


Null deviance: 964.52 on 713 degrees of freedom
Residual deviance: 960.23 on 712 degrees of freedom
AIC: 964.23
 此处的显着性检验的p值略低于4%。实际上,可以将其与偏差值(零偏差和残差)相关联。

在x毫无价值的假设下,D_0趋于具有1个自由度的χ2分布。我们可以计算似然比检验的p值自由度,




1-pchisq(
[1] 0.03833717

与高斯检验一致。但是如果我们考虑非线性变换



glm(Survived~bs(Age)


Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8648 0.3460 2.500 0.012433 *
bs(Age)1 -3.6772 1.0458 -3.516 0.000438 ***
bs(Age)2 1.7430 1.1068 1.575 0.115299
bs(Age)3 -3.9251 1.4544 -2.699 0.006961 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1


(Dispersion parameter for binomial family taken to be 1)


Null deviance: 964.52 on 713 degrees of freedom
Residual deviance: 948.69 on 710 degrees of freedom

Age的p值更小,似乎“更重要”






[1] 0.001228712

为了可视化非零相关性,可以考虑给定y = 1时x的条件分布,并将其与给定y = 0时x的条件分布进行比较,






Two-sample Kolmogorov-Smirnov test


data: X[Y == 0] and X[Y == 1]
D = 0.088777, p-value = 0.1324
alternative hypothesis: two-sided

即p值大于10%时,两个分布没有显着差异。




v= seq(0,80
v1 = Vectorize(F1)(vx)

我们可以查看密度

 

另一种方法是离散化变量x并使用Pearson的独立性检验,





table(Xc,Y)
Y
Xc 0 1
(0,19] 85 79
(19,25] 92 45
(25,31.8] 77 50
(31.8,41] 81 63
(41,80] 89 53


Pearson's Chi-squared test


data: table(Xc, Y)
X-squared = 8.6155, df = 4, p-value = 0.07146

p值在此处为7%,分为年龄的五个类别。实际上,我们可以比较p值




pvalue = function(k=5){
LV = quantile(X,(0:k)/k)




plot(k,p,type="l")
abline(h=.05,col="red",lty=2)

 

只要我们有足够的类别,P值就会接近5%。实际上年龄在试图预测乘客是否幸存时是一个重要的变量。


相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
10天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
32 3
|
2月前
|
数据采集
基于R语言的GD库实现地理探测器并自动将连续变量转为类别变量
【9月更文挑战第9天】在R语言中,可通过`gd`包实现地理探测器。首先,安装并加载`gd`包;其次,准备包含地理与因变量的数据框;然后,使用`cut`函数将连续变量转换为分类变量;最后,通过`gd`函数运行地理探测器,并打印结果以获取q值等统计信息。实际应用时需根据数据特点调整参数。
124 8
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
6月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
3月前
|
机器学习/深度学习 数据采集
R语言逻辑回归、GAM、LDA、KNN、PCA主成分分类分析预测房价及交叉验证
上述介绍仅为简要概述,每个模型在实施时都需要仔细调整与优化。为了实现高度精确的预测,模型选择与调参是至关重要的步骤,并且交叉验证是提升模型稳健性的有效途径。在真实世界的房价预测问题中,可能还需要结合地域经济、市场趋势等宏观因素进行综合分析。
67 3

热门文章

最新文章