用R语言中的神经网络预测时间序列:多层感知器和极限学习机

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 用R语言中的神经网络预测时间序列:多层感知器和极限学习机

对于此示例,我将对R中的时间序列进行建模。我将最后24个观察值保留为测试集,并将使用其余的观察值来拟合神经网络。当前有两种类型的神经网络可用,多层感知器;和极限学习机。

# 拟合 多层感知器
mlp.fit <- mlp(y.in)
plot(mlp.fit)
print(mlp.fit)

这是使MLP网络适合时间序列的基本命令。这将尝试自动指定自回归输入和时间序列的必要预处理。利用预先指定的参数,它训练了20个用于生成整体预测的网络和一个具有5个节点的隐藏层。print是输出拟合网络的摘要:




MLP fit with 5 hidden nodes and 20 repetitions.
Series modelled in differences: D1.
Univariate lags: (1,3,4,6,7,8,9,10,12)
Deterministic seasonal dummies included.
Forecast combined using the median operator.
MSE: 6.2011.

该函数选择了自回归滞后,并将虚拟变量用于季节性趋势。使用plot显示网络的体系结构(图1)。

图1.输出 plot(mlp.fit).

浅红色输入代表用于编码季节性的二进制虚拟变量,而灰色输入则是自回归滞后项。要生成预测,您可以输入:


forecast(mlp.fit,h=tst.n)


图2显示了整体预测,以及各个神经网络的预测。

图2. plotMLP预测的输出。

您还可以选择隐藏节点的数量。



# 自动拟合 MLP
hd.auto.type="valid"

这将评估1到10个隐藏节点,并选择验证集MSE上的最佳节点。也可以使用交叉验证。输出误差:




MSE
H.1  0.0083
H.2  0.0066
H.3  0.0065
H.4  0.0066
H.5  0.0071
H.6  0.0074
H.7  0.0061
H.8  0.0076
H.9  0.0083
H.10 0.0076

ELM几乎以相同的方式工作。




# 拟合 ELM
elm.fit <- elm(y.in)
print(elm.fit)
plot(elm.fit))

以下是模型摘要:

ELM fit with 100 hidden nodes and 20 repetitions.
Series modelled in differences: D1.
Univariate lags: (1,3,4,6,7,8,9,10,12)
Deterministic seasonal dummies included.
Forecast combined using the median operator.
Output weight estimation using: lasso.
MSE: 83.0044.

在图3的网络体系结构中只有用黑线连接到输出层的节点才有助于预测。其余的连接权重已缩小为零。

图3. ELM网络架构。

该程序包在R中实现了层次时间预测。可以通过以下方式进行操作:

forecastfunction=mlp.thief

因为对于这个简单的示例,我保留了一些测试集,所以我将预测与指数平滑进行比较:

 

METHOD MAE
MLP (5 nodes) 62.471
MLP (auto) 48.234
ELM 48.253
THieF-MLP 45.906
ETS 64.528

像MAPA这样的时间层次结构使您的预测更可靠,更准确。但是,使用神经网络会明显增加计算成本!

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
1月前
|
机器学习/深度学习 数据采集 存储
时间序列预测新突破:深入解析循环神经网络(RNN)在金融数据分析中的应用
【10月更文挑战第7天】时间序列预测是数据科学领域的一个重要课题,特别是在金融行业中。准确的时间序列预测能够帮助投资者做出更明智的决策,比如股票价格预测、汇率变动预测等。近年来,随着深度学习技术的发展,尤其是循环神经网络(Recurrent Neural Networks, RNNs)及其变体如长短期记忆网络(LSTM)和门控循环单元(GRU),在处理时间序列数据方面展现出了巨大的潜力。本文将探讨RNN的基本概念,并通过具体的代码示例展示如何使用这些模型来进行金融数据分析。
217 2
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
2月前
|
机器学习/深度学习 自动驾驶 搜索推荐
深度学习之探索神经网络、感知器与损失函数
在当今的数字化时代,深度学习作为一种强大的机器学习技术,正在迅速改变着我们的生活方式。无论是智能推荐系统、自动驾驶车辆还是语音识别应用,深度学习都在背后默默地发挥作用。
47 1
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
6月前
|
机器学习/深度学习 数据挖掘 计算机视觉
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
R语言中的神经网络预测时间序列:多层感知器(MLP)和极限学习机(ELM)数据分析报告
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
R语言神经网络与决策树的银行顾客信用评估模型对比可视化研究
|
6月前
|
机器学习/深度学习 监控 数据可视化
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例2
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例1
R语言SOM神经网络聚类、多层感知机MLP、PCA主成分分析可视化银行客户信用数据实例
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言神经网络模型金融应用预测上证指数时间序列可视化
R语言神经网络模型金融应用预测上证指数时间序列可视化
|
6月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享
R语言软件对房屋价格预测:回归、LASSO、决策树、随机森林、GBM、神经网络和SVM可视化|数据分享

热门文章

最新文章