R语言Markowitz马克维茨投资组合理论分析和可视化

简介: R语言Markowitz马克维茨投资组合理论分析和可视化

之前我们在关于投资组合优化相关的内容中已经看到了Markowitz的理论,其中给出了预期收益和协方差矩阵

 
> pzoo = zoo ( StockIndex , order.by = rownames ( StockIndex ) )
> rzoo = ( pzoo / lag ( pzoo , k = -1) - 1 ) * 100
>


ans <- do.call ( method , list ( x = x , ... ) ) + return ( getCov ( ans ) )} > covmat=Moments(as.matrix(rzoo),"CovClassic")
> (covmat=round(covmat,1))
SP500 N225 FTSE100 CAC40 GDAX HSI
SP500   17.8 12.7 13.8 17.8 19.5 18.9
N225    12.7 36.6 10.8 15.0 16.2 16.7
FTSE100 13.8 10.8 17.3 18.8 19.4 19.1
CAC40   17.8 15.0 18.8 30.9 29.9 22.8
GDAX    19.5 16.2 19.4 29.9 38.0 26.1
HSI     18.9 16.7 19.1 22.8 26.1 58.1

现在,我们可以可视化下面的有效边界(和可接受的投资组合)


> points(sqrt(diag(covmat)),er,pch=19,col="blue")
> text(sqrt(diag(covmat)),er,names(er),pos=4, col="blue",cex=.6)
> polygon(u,v,border=NA,col=rgb(0,0,1,.3))

 

实际上很难在该图上将重要的东西可视化:收益之间的相关性。它不是点(单变量,具有预期收益和标准差),而是有效边界。例如,这是我们的相关矩阵



SP500 N225 FTSE100 CAC40 GDAX HSI
SP500   1.00 0.50 0.79 0.76 0.75 0.59
N225    0.50 1.00 0.43 0.45 0.43 0.36
FTSE100 0.79 0.43 1.00 0.81 0.76 0.60
CAC40   0.76 0.45 0.81 1.00 0.87 0.54
GDAX    0.75 0.43 0.76 0.87 1.00 0.56
HSI     0.59 0.36 0.60 0.54 0.56 1.00

我们实际上可以更改FT500和FTSE100之间的相关性(此处为.786)


courbe=function(r=.786){


ef
plot(ef$sd,ef$er,type="l",xlab="Standard Deviation",ylab="Expected Return",
points(sqrt(diag(covmat)),er,pch=19,col=c("blue","red")[c(2,1,2,1,1,1)])


polygon(u,v,border=NA,col=rgb(0,0,1,.3))
}

例如,相关系数为0.6,我们得到以下有效边界

> courbe(.6)

并具有更强的相关性

> courbe(.9)

 

很明显,相关性很重要。但更重要的是,期望收益和协方差不是给出而是估计的。以前,我们确实将标准估计量用于方差矩阵。但是可以考虑使用另一个更可靠的估计器


covmat=Moments(as.matrix(rzoo),"CovSde")

points(sqrt(diag(covmat)),er,pch=19,col="blue")
text(sqrt(diag(covmat)),er,names(er),pos=4,col="blue",cex=.6)
polygon(u,v,border=NA,col=rgb(0,0,1,.3))

 

它确实影响了点的(水平)位置,因为方差现在以及有效边界都不同,而方差明显更低。

为了说明最后一点,说明我们确实有基于观察到的收益的估计量,如果我们观察到不同的收益怎么办?了解可能发生的情况的一种方法是使用引导程序,例如每日收益。



> plot(ef$sd,ef$er,type="l",xlab="Standard Deviation",ylab="Expected Return", xlim=c(3.5,11),ylim=c(0,2.5),col="white",lwd=1.5)
> polygon(u,v,border=NA,col=rgb(0,0,1,.3))
> for(i in 1:100){
+
+
+ er=apply(as.matrix(rzoo)[id,],2,mean)
+ points(sqrt(diag(covmat))[k],er[k],cex=.5)
+ }

 

 

或其他资产

 

这是我们在(估计的)有效边界上得到的




> polygon(u,v,border=NA,col=rgb(0,0,1,.3))
> for(i in 1:100){
+
+
+
+ ef <- efficient.frontier(er, covmat, alpha.min=-2.5, alpha.max=2.5, nport=50)
+ lines(ef$sd,ef$er,col="red")
+ }

因此,至少在统计学的角度上,要评估一个投资组合是否最优是很困难的。

相关文章
|
4月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
5月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
3月前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
62 3
|
4月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
5月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
5月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
5月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。
|
8月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
8月前
|
机器学习/深度学习 数据可视化
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为2
R语言逻辑回归logistic模型ROC曲线可视化分析2例:麻醉剂用量影响、汽车购买行为