R语言生存分析可视化分析

简介: R语言生存分析可视化分析

生存分析对应于一组统计方法,用于调查感兴趣事件发生所花费的时间。

生存分析被用于各种领域,例如:

癌症研究为患者生存时间分析,

“事件历史分析”的社会学

在工程的“故障时间分析”。

在癌症研究中,典型的研究问题如下:

某些临床特征对患者的生存有何影响?

个人三年存活的概率是多少?

各组患者的生存率有差异吗?


基本概念

在这里,我们从定义生存分析的基本术语开始,包括:

生存时间和事件

生存功能和危险功能

癌症研究中的生存时间和事件类型

有不同类型的事件,包括:

复发

死亡

从“应对治疗”(完全缓解)到发生感兴趣事件的时间通常称为生存时间(或事件发生的时间)。

癌症研究中两个最重要的措施包括:i)死亡时间;和ii)无复发存活时间,其对应于治疗反应与疾病复发之间的时间。它也被称为无病生存时间和无事件生存时间

如上所述,生存分析侧重于直到发生感兴趣事件(复发或死亡)的预期持续时间。


Kaplan-Meier生存评估

Kaplan-Meier(KM)方法是一种非参数方法,用于估计观察到的生存时间的生存概率(Kaplan和Meier,1958)。

知识管理生存曲线是知识管理生存概率与时间的关系曲线,它提供了一个有用的数据总结,可以用来估计诸如中位生存时间之类的衡量指标。


R生存分析

安装并加载所需的R包

我们将使用两个R包:

生存计算生存分析

survminer的总结和可视化生存分析结果

安装软件包
install.packages(c("survival","survminer"))
加载包

library("survival")
library("survminer")


示例数据集

我们将使用生存包中提供的肺癌数据。

data("lung")head(lung)

inst time status age sex ph.ecog ph.karno pat.karno meal.cal wt.loss1    3  306      2  74  1      1      90      100    1175      NA2    3  455      2  68  1      0      90        90    1225      153    3 1010      1  56  1      0      90        90      NA      154    5  210      2  57  1      1      90        60    1150      115    1  883      2  60  1      0      100        90      NA      06  12 1022      1  74  1      1      50        80      513      0

inst:机构代码

时间:以天为单位的生存时间

状态:审查状态1 =审查,2 =死亡

年龄:年龄

性别:男= 1女= 2

ph.ecog:ECOG表现评分(0 =好5 =死)

ph.karno:Karnofsky表现评分(bad = 0-好= 100)由医师评定

pat.karno:Karnofsky表现评分由患者评估

膳食:餐时消耗的卡路里

wt.loss:过去六个月的体重下降


计算生存曲线:survfit()

我们要按性别来计算生存概率。

功能survfit()[在存活包]可以被用来计算Kaplan-Meier存活估计。其主要论点包括:

使用函数Surv()创建的生存对象


要计算生存曲线,请输入以下内容:

fit<-survfit(Surv(time,status)~sex,data=lung)print(fit)

Call: survfit(formula = Surv(time, status) ~ sex, data = lung)n events median 0.95LCL 0.95UCLsex=1 138    112    270    212    310sex=2  90    53    426    348    550

默认情况下,函数print()显示生存曲线的简短摘要。它显示观察次数,事件数量,中位数生存和中位数的置信限。

如果要显示生存曲线的更完整摘要,请输入以下内容:

# 生存曲线摘要
summary(fit)
summary(fit)$table

可视化生存曲线

我们 生成两组受试者的生存曲线。






legend.labs更改图例标签。




每组的中位生存时间表示生存概率S(t)为0.5的时间。


使用参数xlim可以缩短生存曲线,如下所示:


请注意,可以使用参数fun指定三个经常使用的转换:




累积性危险是常用来估计危险概率。


Kaplan-Meier生命表:生存曲线的总结

如上所述,您可以使用函数summary()来获得生存曲线的完整摘要:

summary(fit)


在生存曲线已经与一个或多个变量拟合的情况下,surv_summary对象包含表示变量的额外列。这使得有可能根据地层或某些因素的组合来面对ggsurvplot的输出。

 

Log-Rank检验比较生存曲线:survdiff()

数秩检验是比较两条或更多条生存曲线的最广泛使用的方法。零假设是两组在生存期间没有差异。

可以使用survdiff()如下:

surv_diff<-survdiff(Surv(time,status)~sex,data=lung)
surv_diff

Call:survdiff(formula = Surv(time, status) ~ sex, data = lung)
N Observed Expected (O-E)^2/E (O-E)^2/V
sex=1 138      112    91.6      4.55      10.3
sex=2  90      53    73.4      5.68      10.3
Chisq= 10.3  on 1 degrees of freedom, p= 0.00131

存活率差异的对数秩检验给出p = 0.0013的p值,表明性别组在存活方面差异显着。


复杂的生存曲线

在本节中,我们将使用多个因素的组合计算生存曲线。接下来,我们将面向ggsurvplot()的输出结合因素

 fit2<-survfit(Surv(time,status)~sex+rx+adhere,data=colon)

使用幸存者可视化输出。下面的图显示了性别变量根据rx&adhere的值生存的曲线。



概要

生存分析是一组数据分析的统计方法,其中感兴趣的结果变量是事件发生之前的时间。


在这篇文章中,我们演示了如何使用两个R软件包的组合来执行和可视化生存分析:生存(用于分析)和生存者(用于可视化)。

相关文章
|
2月前
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
3月前
|
数据可视化 数据挖掘 图形学
R语言基础可视化:使用ggplot2构建精美图形的探索
【8月更文挑战第29天】 `ggplot2`是R语言中一个非常强大的图形构建工具,它基于图形语法提供了一种灵活且直观的方式来创建各种统计图形。通过掌握`ggplot2`的基本用法和美化技巧,你可以轻松地将复杂的数据转化为直观易懂的图形,从而更好地理解和展示你的数据分析结果。希望本文能够为你探索`ggplot2`的世界提供一些帮助和启发。
|
3月前
|
数据可视化 数据挖掘 数据处理
R语言高级可视化技巧:使用Plotly与Shiny制作互动图表
【8月更文挑战第30天】通过使用`plotly`和`shiny`,我们可以轻松地创建高度互动的数据可视化图表。这不仅增强了图表的表现力,还提高了用户与数据的交互性,使得数据探索变得更加直观和高效。本文仅介绍了基本的使用方法,`plotly`和`shiny`还提供了更多高级功能和自定义选项,等待你去探索和发现。希望这篇文章能帮助你掌握使用`plotly`和`shiny`制作互动图表的技巧,并在你的数据分析和可视化工作中发挥更大的作用。
|
22天前
|
数据挖掘 C语言 C++
R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。
【10月更文挑战第21天】时间序列分析是一种重要的数据分析方法,广泛应用于经济学、金融学、气象学、生态学等领域。R语言是一种强大的统计分析工具,提供了丰富的函数和包用于时间序列分析。本文将介绍使用R语言进行时间序列分析的基本概念、方法和实例,帮助读者掌握R语言在时间序列分析中的应用。
40 3
|
6月前
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化
|
2月前
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
3月前
|
数据可视化
R语言可视化设计原则:打造吸引力十足的数据可视化
【8月更文挑战第30天】R语言可视化设计是一个综合性的过程,需要综合运用多个设计原则来创作出吸引力十足的作品。通过明确目标、选择合适的图表类型、合理运用色彩与视觉层次、明确标注与引导视线以及引入互动性与动态效果等原则的应用,你可以显著提升你的数据可视化作品的吸引力和实用性。希望本文能为你提供一些有益的启示和帮助。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
R语言在数据科学中的应用实例:探索与预测分析
【8月更文挑战第31天】通过上述实例,我们展示了R语言在数据科学中的强大应用。从数据准备、探索、预处理到建模与预测,R语言提供了完整的解决方案和丰富的工具集。当然,数据科学远不止于此,随着技术的不断发展和业务需求的不断变化,我们需要不断学习和探索新的方法和工具,以更好地应对挑战,挖掘数据的潜在价值。 未来,随着大数据和人工智能技术的普及,R语言在数据科学领域的应用将更加广泛和深入。我们期待看到更多创新的应用实例,为各行各业的发展注入新的动力。
|
3月前
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
3月前
|
资源调度 数据挖掘
R语言回归分析:线性回归模型的构建与评估
【8月更文挑战第31天】线性回归模型是统计分析中一种重要且实用的工具,能够帮助我们理解和预测自变量与因变量之间的线性关系。在R语言中,我们可以轻松地构建和评估线性回归模型,从而对数据背后的关系进行深入的探索和分析。