Hive【基础 01】核心概念+体系架构+数据类型+内容格式+存储格式+内外部表(部分图片来源于网络)

简介: 【4月更文挑战第6天】Hive【基础 01】核心概念+体系架构+数据类型+内容格式+存储格式+内外部表(部分图片来源于网络)

在这里插入图片描述

1.简介

Hive 是一个构建在 Hadoop 之上的数据仓库,它可以将结构化的数据文件映射成表,并提供类 SQL 查询功能,用于查询的 SQL 语句会被转化为 MapReduce 作业,然后提交到 Hadoop 上运行。特点:

  1. 简单、容易上手 (提供了类似 sql 的查询语言 hql),使得精通 sql 但是不了解 Java 编程的人也能很好地进行大数据分析;
  2. 灵活性高,可以自定义用户函数 (UDF) 和存储格式;
  3. 为超大的数据集设计的计算和存储能力,集群扩展容易;
  4. 统一的元数据管理,可与 presto/impala/sparksql 等共享数据;
  5. 执行延迟高,不适合做数据的实时处理,但适合做海量数据的离线处理。

2.体系架构

请添加图片描述

2.1 command-line shell & thrift/jdbc

可以用 command-line shell 和 thrift/jdbc 两种方式来操作数据:

  • command-line shell:通过 hive 命令行的的方式来操作数据;
  • thrift/jdbc:通过 thrift 协议按照标准的 JDBC 的方式操作数据。

2.2 Metastore

在 Hive 中,表名、表结构、字段名、字段类型、表的分隔符等统一被称为元数据。所有的元数据默认存储在 Hive 内置的 derby 数据库中,但由于 derby 只能有一个实例,也就是说不能有多个命令行客户端同时访问,所以在实际生产环境中,通常使用 MySQL 代替 derby。

Hive 进行的是统一的元数据管理,就是说你在 Hive 上创建了一张表,然后在 presto/impala/sparksql 中都是可以直接使用的,它们会从 Metastore 中获取统一的元数据信息,同样的你在 presto/impala/sparksql 中创建一张表,在 Hive 中也可以直接使用。

2.3 HQL的执行流程

Hive 在执行一条 HQL 的时候,会经过以下步骤:

  1. 语法解析:Antlr 定义 SQL 的语法规则,完成 SQL 词法,语法解析,将 SQL 转化为抽象 语法树AST Tree;
  2. 语义解析:遍历 AST Tree,抽象出查询的基本组成单元 QueryBlock;
  3. 生成逻辑执行计划:遍历 QueryBlock,翻译为执行操作树 OperatorTree;
  4. 优化逻辑执行计划:逻辑层优化器进行OperatorTree变换,合并不必要的ReduceSinkOperator,减少shuffle数据量;
  5. 生成物理执行计划:遍历 OperatorTree,翻译为 MapReduce 任务;
  6. 优化物理执行计划:物理层优化器进行 MapReduce 任务的变换,生成最终的执行计划。

3.数据类型

3.1 基本数据类型

Hive 表中的列支持以下基本数据类型:
请添加图片描述

TIMESTAMP 和 TIMESTAMP WITH LOCAL TIME ZONE 的区别如下:

  • TIMESTAMP WITH LOCAL TIME ZONE:用户提交时间给数据库时,会被转换成数据库所在的时区来保存。查询时则按照查询客户端的不同,转换为查询客户端所在时区的时间。
  • TIMESTAMP :提交什么时间就保存什么时间,查询时也不做任何转换。

3.2 隐式转换

Hive 中基本数据类型遵循以下的层次结构,按照这个层次结构,子类型到祖先类型允许隐式转换。例如 INT 类型的数据允许隐式转换为 BIGINT 类型。额外注意的是:按照类型层次结构允许将 STRING 类型隐式转换为 DOUBLE 类型。
请添加图片描述

3.3 复杂类型

3.4 示例

如下给出一个基本数据类型和复杂数据类型的使用示例:

CREATE TABLE students(
name   STRING,  -- 姓名
age    INT,    -- 年龄
subject  ARRAY<STRING>,  --学科
score   MAP<STRING,FLOAT>,  --各个学科考试成绩
address  STRUCT<houseNumber:int, street:STRING, city:STRING, province:
STRING>  --家庭居住地址
) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";

CREATE TABLE students(name STRING,age INT) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";

4.内容格式

当数据存储在文本文件中,必须按照一定格式区别行和列,如使用逗号作为分隔符的 CSV 文件(Comma-Separated Values) 或者使用制表符作为分隔值的 TSV 文件 (Tab-Separated Values)。但此时也存在一个缺点,就是正常的文件内容中也可能出现逗号或者制表符。

所以 Hive 默认使用了几个平时很少出现的字符,这些字符一般不会作为内容出现在文件中。Hive 默认的行和列分隔符如下表所示。

请添加图片描述

使用示例如下:

CREATE TABLE page_view(viewTime INT, userid BIGINT)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\001'
 COLLECTION ITEMS TERMINATED BY '\002'
 MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;

5.存储格式

5.1 支持的存储格式

Hive 会在 HDFS 为每个数据库上创建一个目录,数据库中的表是该目录的子目录,表中的数据会以文件的形式存储在对应的表目录下。Hive 支持以下几种文件存储格式:

请添加图片描述

以上压缩格式中 ORC 和 Parquet 的综合性能突出,使用较为广泛,推荐使用这两种格式。

5.2 指定存储格式

通常在创建表的时候使用 STORED AS 参数指定:

CREATE TABLE page_view(viewTime INT, userid BIGINT)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '\001'
 COLLECTION ITEMS TERMINATED BY '\002'
 MAP KEYS TERMINATED BY '\003'
STORED AS SEQUENCEFILE;

各个存储文件类型指定方式如下:

  • STORED AS TEXTFILE
  • STORED AS SEQUENCEFILE
  • STORED AS ORC
  • STORED AS PARQUET
  • STORED AS AVRO
  • STORED AS RCFILE

6.内部表和外部表

内部表又叫做管理表 (Managed/Internal Table),创建表时不做任何指定,默认创建的就是内部表。想要创建外部表 (External Table),则需要使用 External 进行修饰。 内部表和外部表主要区别如下:
请添加图片描述

目录
相关文章
|
7天前
|
存储 网络协议 安全
软件管理,磁盘存储,文件系统以及网络协议
【11月更文挑战第9天】本文介绍了软件管理、磁盘存储和网络协议等内容。软件管理包括软件生命周期管理和软件包管理,涉及需求分析、设计、实现、测试、发布、维护等阶段,以及软件包的安装、升级和依赖关系处理。磁盘存储部分讲解了磁盘的物理结构、分区与格式化、存储管理技术(如 RAID 和存储虚拟化)。网络协议部分涵盖了分层模型、重要协议(如 HTTP、TCP、IP)及其应用与安全。
|
8天前
|
网络协议 数据挖掘 5G
适用于金融和交易应用的低延迟网络:技术、架构与应用
适用于金融和交易应用的低延迟网络:技术、架构与应用
36 5
|
9天前
|
SQL 存储 关系型数据库
【赵渝强老师】Hive的内部表与外部表
Hive是基于HDFS的数据仓库,支持SQL查询。其数据模型包括内部表、外部表、分区表、临时表和桶表。本文介绍了如何创建和使用内部表和外部表,提供了详细的步骤和示例代码,并附有视频讲解。
|
2月前
|
数据采集 存储 JavaScript
构建您的第一个Python网络爬虫:抓取、解析与存储数据
【9月更文挑战第24天】在数字时代,数据是新的金矿。本文将引导您使用Python编写一个简单的网络爬虫,从互联网上自动抓取信息。我们将介绍如何使用requests库获取网页内容,BeautifulSoup进行HTML解析,以及如何将数据存储到文件或数据库中。无论您是数据分析师、研究人员还是对编程感兴趣的新手,这篇文章都将为您提供一个实用的入门指南。拿起键盘,让我们开始挖掘互联网的宝藏吧!
|
2月前
|
边缘计算 人工智能 安全
5G 核心网络 (5GC) 与 4G 核心网:架构变革,赋能未来
5G 核心网络 (5GC) 与 4G 核心网:架构变革,赋能未来
134 6
|
1月前
|
存储 网络协议 数据挖掘
|
2月前
|
存储 监控 物联网
蜂窝网络基础架构详解:从基站到核心网
蜂窝网络基础架构详解:从基站到核心网
225 9
|
2月前
|
编解码 人工智能 文件存储
卷积神经网络架构:EfficientNet结构的特点
EfficientNet是一种高效的卷积神经网络架构,它通过系统化的方法来提升模型的性能和效率。
57 1
|
2月前
|
传感器 监控 物联网
无线传感器网络的基本架构及其广泛应用
无线传感器网络的基本架构及其广泛应用
229 0
|
3月前
|
网络协议 安全 网络性能优化
OSI 模型详解:网络通信的七层架构
【8月更文挑战第31天】
682 0