Apollo开发者社区致力于为全球自动驾驶开发者和合作伙伴提供的一个学习、交流的平台,助力开发者快速了解并使用自动驾驶技术
自动驾驶技术的快速发展推动了自动驾驶感知模块的不断演进。作为开放的、完整的、安全的平台,Apollo自动驾驶系统持续致力于为合作伙伴提供全面的自动驾驶解决方案。在最新的8.0版本中,Apollo团队对感知模块进行了全新的升级,集成了深度学习和智能感知技术,以进一步提升开发效率和模型性能。本文将详细介绍Apollo 8.0版本中感知模块的创新之处。
1. 全新的模型训练,易用的深度学习模型
在Apollo 8.0中,我们与Paddle3D合作,提供了端到端的自动驾驶模型开发解决方案,覆盖了从自动驾驶数据集到模型训练、评估和导出的全流程。针对自动驾驶中的3D目标检测和分割任务,我们提供了最新的SOTA算法模型实现,这些模型具备高性能、易用性,并已在实际数据集上验证了精度和速度。
在Apollo 8.0感知模型中,引入了三个深度学习模型:
- PETR:创新性地将3D坐标信息与图像特征相融合,借助Transfomer结构进行端到端的3D目标检测。在nuScenes上精度达到了43.52 NDS, 38.35mAP。
- CenterPoint:基于关键点检测的三维物体检测器,不需要人为设定Anchor尺寸,在nuScenes上精度达到了61.30 NDS,50.97mAP。
- CaDDN:针对单张图像预测3D物体的病态问题,通过使用每个像素的预测分类深度分布,将丰富的上下文特征信息投射到3D空间中适当深度区间。在KITTI数据中达到了较高的精度指标(Car类别3D AP 21.45 14.36 12.57)。
2. 清晰的任务流水线,多样的算法插件
在Apollo 8.0中,我们改进了任务流水线的设计,使每个任务的运行流程更加清晰,同时方便进行扩展。开发者可以根据不同的感知任务类型创建相应的流水线,并通过配置文件定义流水线任务。此外,我们提供了多种算法插件供开发者选择,如4种不同的检测器,开发者可根据配置文件选择不同的检测器验证效果。这一设计使得算法工程师能更专注于算法本身,而不需过多关注框架实现。
3. 高效的模型管理,便捷的模型验证
在Apollo 8.0中引入了模型Meta和模型管理,方便快捷地将训练好的模型部署到系统中。模型Meta包含了模型的基本信息和标准输入输出,同时提供了模型管理工具,可下载安装模型仓库中的模型,并展示系统中已安装的模型和详细信息。此外,我们提供了基于数据集的数据包和可视化工具链,方便开发者在线验证模型效果和调试感知模型。
结语
Apollo 8.0版本的感知模块升级不仅提升了开发效率,还提供了更优秀的深度学习模型和模型管理工具,助力开发者更轻松地构建自动驾驶系统。这一创新举措进一步巩固了Apollo自动驾驶系统在自动驾驶技术领域的领先地位,为自动驾驶产业的发展带来新的机遇和挑战。